Non-Rationalised NCERT Books Solution | ||||||
---|---|---|---|---|---|---|
6th | 7th | 8th | 9th | 10th | 11th | 12th |
Content On This Page | ||
---|---|---|
Example 1 to 4 (Before Exercise 8.1) | Exercise 8.1 | Example 5 to 9 (Before Exercise 8.2) |
Exercise 8.2 | Example 10 to 17 - Miscellaneous Examples | Miscellaneous Exercise on Chapter 8 |
Chapter 8 Binomial Theorem
Welcome to the solutions guide for Chapter 8: Binomial Theorem. This chapter unveils a remarkably powerful and elegant formula in algebra that provides a systematic method for expanding binomial expressions raised to any positive integer power. A binomial is simply an algebraic expression with two terms, like $(a+b)$ or $(2x - 3y)$. While expanding $(a+b)^2$ or $(a+b)^3$ is manageable through direct multiplication, performing this expansion for higher powers like $(a+b)^7$ or $(a+b)^{10}$ becomes increasingly tedious and prone to errors. The Binomial Theorem offers a concise and efficient formula to directly determine the terms and coefficients of such expansions, revealing beautiful patterns involving combinations and powers. Understanding this theorem is crucial not only for algebraic manipulation but also for its applications in probability, statistics, calculus, and various areas of science and engineering.
The cornerstone of this chapter is the statement of the Binomial Theorem itself. For any binomial expression $(a+b)$ and any positive integer $n$, the theorem states:
$(a + b)^n = {}^nC_0a^n b^0 + {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_ra^{n-r}b^r + \dots + {}^nC_na^0b^n$
This can be written more compactly using summation notation:
$(a + b)^n = \sum\limits_{r=0}^n {}^nC_r a^{n-r} b^r$
Here, ${}^nC_r = \frac{n!}{r!(n-r)!}$ represents the binomial coefficient, which corresponds to the number of ways to choose $r$ items from a set of $n$ (a concept from permutations and combinations). The solutions provided demonstrate the step-by-step application of this theorem to expand various binomial expressions, such as $(x+y)^4$, $(2x - 3y)^5$ (where $b = -3y$), or numerical expressions like $(101)^3 = (100+1)^3$.
Key properties of the binomial expansion, highlighted in the solutions, include:
- The total number of terms in the expansion of $(a+b)^n$ is always $\mathbf{n+1}$.
- The powers of the first term '$a$' decrease from $n$ down to 0, while the powers of the second term '$b$' increase from 0 up to $n$.
- The sum of the powers of $a$ and $b$ in each term is always equal to $n$.
- The binomial coefficients (${}^nC_r$) are symmetric: ${}^nC_r = {}^nC_{n-r}$. For small values of $n$, these coefficients can also be conveniently found using Pascal's triangle.
A significant practical application involves finding specific terms within the expansion without calculating the entire series. The formula for the general term, which represents the (r+1)th term in the expansion (starting with $r=0$ for the first term), is crucial:
$T_{r+1} = {}^nC_r a^{n-r} b^r$
Solutions demonstrate using this formula effectively to:
- Find a specific term (e.g., the $4^{th}$ term, which corresponds to $r=3$).
- Find the term independent of $x$ in expansions involving variables (e.g., in $\left(x^2 + \frac{1}{x}\right)^{12}$), achieved by finding the value of $r$ for which the power of $x$ in $T_{r+1}$ simplifies to zero.
- Determine the coefficient of a specific power of $x$ (e.g., the coefficient of $x^5$).
The process for finding the middle term(s) in the expansion is also explained. The approach depends on whether the exponent $n$ is even or odd:
- If $n$ is even, there is one middle term: the $\left(\frac{n}{2} + 1\right)^{th}$ term (found using $r = \frac{n}{2}$).
- If $n$ is odd, there are two middle terms: the $\left(\frac{n+1}{2}\right)^{th}$ and the $\left(\frac{n+1}{2} + 1\right)^{th}$ terms (found using $r = \frac{n-1}{2}$ and $r = \frac{n+1}{2}$).
Solutions illustrate these calculations. Additionally, the theorem can be used for approximations, for example, approximating $(0.99)^5 = (1 - 0.01)^5$ by using the first few terms of its binomial expansion. These detailed solutions provide the necessary framework for proficiently applying the Binomial Theorem.
Example 1 to 4 (Before Exercise 8.1)
Example 1: Expand $\left( x^{2} +\frac{3}{x}\right)^{4}\;,\; x \neq 0$
Answer:
Given expression:
$\left( x^{2} +\frac{3}{x}\right)^{4}$
This is in the form $(a+b)^n$, where $a = x^2$, $b = \frac{3}{x}$, and $n = 4$.
We can expand this expression using the Binomial Theorem, which states that:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + ... + \binom{n}{n-1}a^1 b^{n-1} + \binom{n}{n}a^0 b^n$
For $n=4$, the expansion is:
$(a+b)^4 = \binom{4}{0}a^4 b^0 + \binom{4}{1}a^3 b^1 + \binom{4}{2}a^2 b^2 + \binom{4}{3}a^1 b^3 + \binom{4}{4}a^0 b^4$
Substituting $a = x^2$ and $b = \frac{3}{x}$ into the expansion:
$\left( x^{2} +\frac{3}{x}\right)^{4} = \binom{4}{0}(x^2)^4 \left(\frac{3}{x}\right)^0 + \binom{4}{1}(x^2)^3 \left(\frac{3}{x}\right)^1 + \binom{4}{2}(x^2)^2 \left(\frac{3}{x}\right)^2 + \binom{4}{3}(x^2)^1 \left(\frac{3}{x}\right)^3 + \binom{4}{4}(x^2)^0 \left(\frac{3}{x}\right)^4$
Now, we calculate each term:
Term 1: $\binom{4}{0}(x^2)^4 \left(\frac{3}{x}\right)^0 = 1 \times x^{2 \times 4} \times 1 = 1 \times x^8 \times 1 = x^8$
Term 2: $\binom{4}{1}(x^2)^3 \left(\frac{3}{x}\right)^1 = 4 \times x^{2 \times 3} \times \frac{3}{x} = 4 \times x^6 \times \frac{3}{x} = 12 \frac{x^6}{x} = 12x^{6-1} = 12x^5$
Term 3: $\binom{4}{2}(x^2)^2 \left(\frac{3}{x}\right)^2 = 6 \times x^{2 \times 2} \times \frac{3^2}{x^2} = 6 \times x^4 \times \frac{9}{x^2} = 54 \frac{x^4}{x^2} = 54x^{4-2} = 54x^2$
Term 4: $\binom{4}{3}(x^2)^1 \left(\frac{3}{x}\right)^3 = 4 \times x^2 \times \frac{3^3}{x^3} = 4 \times x^2 \times \frac{27}{x^3} = 108 \frac{x^2}{x^3} = 108x^{2-3} = 108x^{-1} = \frac{108}{x}$
Term 5: $\binom{4}{4}(x^2)^0 \left(\frac{3}{x}\right)^4 = 1 \times 1 \times \frac{3^4}{x^4} = 1 \times 1 \times \frac{81}{x^4} = \frac{81}{x^4}$
Adding the terms together, we get the expanded form:
$\left( x^{2} +\frac{3}{x}\right)^{4} = x^8 + 12x^5 + 54x^2 + \frac{108}{x} + \frac{81}{x^4}$
The expanded form is:
$\mathbf{\left( x^{2} +\frac{3}{x}\right)^{4} = x^8 + 12x^5 + 54x^2 + \frac{108}{x} + \frac{81}{x^4}}$
Example 2: Compute (98)5 .
Answer:
Given expression:
$(98)^5$
We can write 98 as $100 - 2$. So, we need to compute $(100 - 2)^5$.
This is in the form $(a-b)^n$, where $a = 100$, $b = 2$, and $n = 5$.
We can expand this expression using the Binomial Theorem:
$(a-b)^n = \binom{n}{0}a^n b^0 - \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 - \binom{n}{3}a^{n-3} b^3 + ... + (-1)^n \binom{n}{n}a^0 b^n$
For $n=5$, the expansion is:
$(100-2)^5 = \binom{5}{0}(100)^5 (2)^0 - \binom{5}{1}(100)^4 (2)^1 + \binom{5}{2}(100)^3 (2)^2 - \binom{5}{3}(100)^2 (2)^3 + \binom{5}{4}(100)^1 (2)^4 - \binom{5}{5}(100)^0 (2)^5$
Now, we calculate each term:
Term 1: $\binom{5}{0}(100)^5 (2)^0 = 1 \times 10^{10} \times 1 = 10,000,000,000$
Term 2: $-\binom{5}{1}(100)^4 (2)^1 = -5 \times 10^8 \times 2 = -10 \times 100,000,000 = -1,000,000,000$
Term 3: $+\binom{5}{2}(100)^3 (2)^2 = +10 \times 10^6 \times 4 = +40 \times 1,000,000 = +40,000,000$
Term 4: $-\binom{5}{3}(100)^2 (2)^3 = -10 \times 10^4 \times 8 = -80 \times 10,000 = -800,000$
Term 5: $+\binom{5}{4}(100)^1 (2)^4 = +5 \times 100 \times 16 = +500 \times 16 = +8,000$
Term 6: $-\binom{5}{5}(100)^0 (2)^5 = -1 \times 1 \times 32 = -32$
Adding the terms together:
$(98)^5 = 10,000,000,000 - 1,000,000,000 + 40,000,000 - 800,000 + 8,000 - 32$
$(98)^5 = 9,000,000,000 + 40,000,000 - 800,000 + 8,000 - 32$
$(98)^5 = 9,040,000,000 - 800,000 + 8,000 - 32$
$(98)^5 = 9,039,200,000 + 8,000 - 32$
$(98)^5 = 9,039,208,000 - 32$
$(98)^5 = 9,039,207,968$
The computed value is:
$(98)^5 = \mathbf{9,039,207,968}$
Example 3: Which is larger (1.01)1000000 or 10,000?
Answer:
We need to compare the values of $(1.01)^{1000000}$ and $10,000$.
Let the first number be $A = (1.01)^{1000000}$.
We can write $1.01$ as $1 + 0.01$.
So, $A = (1 + 0.01)^{1000000}$.
We can expand this expression using the Binomial Theorem for $(1+x)^n$, which is given by:
$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + ... + \binom{n}{n}x^n$
In this case, $x = 0.01$ and $n = 1000000$.
Expanding $(1 + 0.01)^{1000000}$:
$(1 + 0.01)^{1000000} = \binom{1000000}{0} + \binom{1000000}{1}(0.01) + \binom{1000000}{2}(0.01)^2 + \binom{1000000}{3}(0.01)^3 + ...$
Let's calculate the first two terms of the expansion:
The first term is $\binom{1000000}{0} = 1$.
The second term is $\binom{1000000}{1}(0.01) = 1000000 \times 0.01 = 10000$.
So, the expansion starts with $1 + 10000 + \text{ subsequent terms}$.
The subsequent terms are $\binom{1000000}{2}(0.01)^2$, $\binom{1000000}{3}(0.01)^3$, and so on.
Since $n = 1000000$ is a positive integer and $x = 0.01$ is a positive number, all the terms in the binomial expansion $\binom{n}{k}x^k$ for $k \geq 2$ will be positive.
Therefore, the sum of the subsequent terms is a positive value.
This means:
$(1.01)^{1000000} = 1 + 10000 + (\text{a positive value})$
$(1.01)^{1000000} = 10001 + (\text{a positive value})$
From this, it is clear that $(1.01)^{1000000}$ is greater than $10001$.
Since $10001 > 10000$, we can conclude that $(1.01)^{1000000}$ is larger than $10000$.
Thus, $\mathbf{(1.01)^{1000000} \text{ is larger than } 10,000}$.
Example 4: Using binomial theorem, prove that 6n – 5n always leaves remainder 1 when divided by 25.
Answer:
To Prove:
The expression $6^n - 5n$ leaves a remainder of 1 when divided by 25, for any positive integer $n$.
This is equivalent to proving that $6^n - 5n \equiv 1 \pmod{25}$, or $6^n - 5n - 1$ is divisible by 25.
Proof:
Consider the expression $6^n$. We can write $6$ as $1 + 5$.
So, $6^n = (1 + 5)^n$.
Using the Binomial Theorem for a positive integer $n$, the expansion of $(1+x)^n$ is given by:
$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + ... + \binom{n}{n}x^n$
Substitute $x = 5$ into the binomial expansion of $(1+5)^n$:
$6^n = (1+5)^n = \binom{n}{0}1^n 5^0 + \binom{n}{1}1^{n-1} 5^1 + \binom{n}{2}1^{n-2} 5^2 + \binom{n}{3}1^{n-3} 5^3 + ... + \binom{n}{n}1^0 5^n$
$6^n = \binom{n}{0} + \binom{n}{1}5 + \binom{n}{2}5^2 + \binom{n}{3}5^3 + ... + \binom{n}{n}5^n$
We know that $\binom{n}{0} = 1$ and $\binom{n}{1} = n$. Also, $5^2 = 25$, $5^3 = 125$, and so on.
So, the expansion becomes:
$6^n = 1 + n \times 5 + \binom{n}{2} \times 25 + \binom{n}{3} \times 125 + ... + \binom{n}{n} \times 5^n$
$6^n = 1 + 5n + 25\binom{n}{2} + 125\binom{n}{3} + ... + 5^n\binom{n}{n}$
Now, consider the expression $6^n - 5n$. Substitute the expansion of $6^n$ into this expression:
$6^n - 5n = (1 + 5n + 25\binom{n}{2} + 125\binom{n}{3} + ... + 5^n\binom{n}{n}) - 5n$
$6^n - 5n = 1 + (5n - 5n) + 25\binom{n}{2} + 125\binom{n}{3} + ... + 5^n\binom{n}{n}$
$6^n - 5n = 1 + 25\binom{n}{2} + 125\binom{n}{3} + ... + 5^n\binom{n}{n}$
For $n=1$, the expansion stops at $\binom{1}{1}5^1$. The terms $\binom{n}{k}$ for $k \geq 2$ are zero.
If $n=1$: $6^1 - 5(1) = 6 - 5 = 1$. When 1 is divided by 25, the remainder is 1.
Using the formula: $6^1 - 5(1) = 1 + 25\binom{1}{2} + 125\binom{1}{3} + ... = 1 + 25(0) + 125(0) + ... = 1$. This confirms the formula holds for $n=1$.
For $n \geq 2$, every term from $25\binom{n}{2}$ onwards has a factor of 25 (since $5^k$ for $k \geq 2$ is divisible by 25).
We can factor out 25 from all terms except the first one:
$6^n - 5n = 1 + 25\left[\binom{n}{2} + \frac{125}{25}\binom{n}{3} + ... + \frac{5^n}{25}\binom{n}{n}\right]$
$6^n - 5n = 1 + 25\left[\binom{n}{2} + 5\binom{n}{3} + ... + 5^{n-2}\binom{n}{n}\right]$
Let $K = \binom{n}{2} + 5\binom{n}{3} + ... + 5^{n-2}\binom{n}{n}$. Since $n$ is a positive integer, $\binom{n}{k}$ are integers, and powers of 5 are integers, $K$ is an integer for $n \geq 2$. For $n=1$, $K$ is an empty sum, which is 0. For $n \geq 1$, $K$ is an integer.
So, for any positive integer $n$, we can write:
$6^n - 5n = 1 + 25K$
where $K$ is an integer.
Rearranging the equation, we get:
$6^n - 5n - 1 = 25K$
Since $K$ is an integer, $25K$ is a multiple of 25. This means that $6^n - 5n - 1$ is divisible by 25.
By the definition of divisibility, this implies that when $6^n - 5n$ is divided by 25, the remainder is 1.
Conclusion:
Using the binomial theorem, we have shown that $6^n - 5n$ can be expressed in the form $1 + 25K$ for some integer $K$ (for any positive integer $n$). This proves that $6^n - 5n$ always leaves a remainder of 1 when divided by 25.
Hence Proved.
Exercise 8.1
Expand each of the expressions in Exercises 1 to 5.
Question 1. (1 – 2x)5
Answer:
Given expression:
$(1 - 2x)^5$
This expression is in the form $(a+b)^n$, where $a = 1$, $b = -2x$, and $n = 5$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + ... + \binom{n}{n}a^0 b^n$
For $n=5$, the expansion of $(1 - 2x)^5$ is:
$(1 - 2x)^5 = \binom{5}{0}(1)^5 (-2x)^0 + \binom{5}{1}(1)^4 (-2x)^1 + \binom{5}{2}(1)^3 (-2x)^2 + \binom{5}{3}(1)^2 (-2x)^3 + \binom{5}{4}(1)^1 (-2x)^4 + \binom{5}{5}(1)^0 (-2x)^5$
Now, we calculate each term:
Term 1: $\binom{5}{0}(1)^5 (-2x)^0 = 1 \times 1 \times 1 = 1$
Term 2: $\binom{5}{1}(1)^4 (-2x)^1 = 5 \times 1 \times (-2x) = -10x$
Term 3: $\binom{5}{2}(1)^3 (-2x)^2 = 10 \times 1 \times (4x^2) = 40x^2$
Term 4: $\binom{5}{3}(1)^2 (-2x)^3 = 10 \times 1 \times (-8x^3) = -80x^3$
Term 5: $\binom{5}{4}(1)^1 (-2x)^4 = 5 \times 1 \times (16x^4) = 80x^4$
Term 6: $\binom{5}{5}(1)^0 (-2x)^5 = 1 \times 1 \times (-32x^5) = -32x^5$
Adding the terms together, we get the expanded form:
$(1 - 2x)^5 = 1 + (-10x) + 40x^2 + (-80x^3) + 80x^4 + (-32x^5)$
$(1 - 2x)^5 = 1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5$
The expanded form is:
$\mathbf{(1 - 2x)^5 = 1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5}$
Question 2. $\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$
Answer:
Given expression:
$\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$
This expression is in the form $(a+b)^n$, where $a = \frac{2}{x}$, $b = -\frac{x}{2}$, and $n = 5$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + ... + \binom{n}{n}a^0 b^n$
For $n=5$, the expansion of $\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$ is:
$\binom{5}{0}\left(\frac{2}{x}\right)^5 \left(-\frac{x}{2}\right)^0 + \binom{5}{1}\left(\frac{2}{x}\right)^4 \left(-\frac{x}{2}\right)^1 + \binom{5}{2}\left(\frac{2}{x}\right)^3 \left(-\frac{x}{2}\right)^2 + \binom{5}{3}\left(\frac{2}{x}\right)^2 \left(-\frac{x}{2}\right)^3 + \binom{5}{4}\left(\frac{2}{x}\right)^1 \left(-\frac{x}{2}\right)^4 + \binom{5}{5}\left(\frac{2}{x}\right)^0 \left(-\frac{x}{2}\right)^5$
Now, we calculate each term:
Term 1: $\binom{5}{0}\left(\frac{2}{x}\right)^5 \left(-\frac{x}{2}\right)^0 = 1 \times \frac{2^5}{x^5} \times 1 = \frac{32}{x^5}$
Term 2: $\binom{5}{1}\left(\frac{2}{x}\right)^4 \left(-\frac{x}{2}\right)^1 = 5 \times \frac{2^4}{x^4} \times \left(-\frac{x}{2}\right) = 5 \times \frac{16}{x^4} \times \left(-\frac{x}{2}\right) = -5 \times \frac{16x}{2x^4} = -5 \times \frac{8}{x^3} = -\frac{40}{x^3}$
Term 3: $\binom{5}{2}\left(\frac{2}{x}\right)^3 \left(-\frac{x}{2}\right)^2 = 10 \times \frac{2^3}{x^3} \times \frac{x^2}{2^2} = 10 \times \frac{8}{x^3} \times \frac{x^2}{4} = 10 \times \frac{8x^2}{4x^3} = 10 \times \frac{2}{x} = \frac{20}{x}$
Term 4: $\binom{5}{3}\left(\frac{2}{x}\right)^2 \left(-\frac{x}{2}\right)^3 = 10 \times \frac{2^2}{x^2} \times \left(-\frac{x^3}{2^3}\right) = 10 \times \frac{4}{x^2} \times \left(-\frac{x^3}{8}\right) = -10 \times \frac{4x^3}{8x^2} = -10 \times \frac{x}{2} = -5x$
Term 5: $\binom{5}{4}\left(\frac{2}{x}\right)^1 \left(-\frac{x}{2}\right)^4 = 5 \times \frac{2}{x} \times \frac{x^4}{2^4} = 5 \times \frac{2}{x} \times \frac{x^4}{16} = 5 \times \frac{2x^4}{16x} = 5 \times \frac{x^3}{8} = \frac{5x^3}{8}$
Term 6: $\binom{5}{5}\left(\frac{2}{x}\right)^0 \left(-\frac{x}{2}\right)^5 = 1 \times 1 \times \left(-\frac{x^5}{2^5}\right) = -\frac{x^5}{32}$
Adding the terms together, we get the expanded form:
$\left( \frac{2}{x}-\frac{x}{2} \right)^{5} = \frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}$
The expanded form is:
$\mathbf{\left( \frac{2}{x}-\frac{x}{2} \right)^{5} = \frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}}$
Question 3. (2x – 3)6
Answer:
Given expression:
$(2x - 3)^6$
This expression is in the form $(a+b)^n$, where $a = 2x$, $b = -3$, and $n = 6$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + ... + \binom{n}{n}a^0 b^n$
For $n=6$, the expansion of $(2x - 3)^6$ is:
$\binom{6}{0}(2x)^6 (-3)^0 + \binom{6}{1}(2x)^5 (-3)^1 + \binom{6}{2}(2x)^4 (-3)^2 + \binom{6}{3}(2x)^3 (-3)^3 + \binom{6}{4}(2x)^2 (-3)^4 + \binom{6}{5}(2x)^1 (-3)^5 + \binom{6}{6}(2x)^0 (-3)^6$
Now, we calculate each term:
Term 1: $\binom{6}{0}(2x)^6 (-3)^0 = 1 \times (64x^6) \times 1 = 64x^6$
Term 2: $\binom{6}{1}(2x)^5 (-3)^1 = 6 \times (32x^5) \times (-3) = 6 \times (-96x^5) = -576x^5$
Term 3: $\binom{6}{2}(2x)^4 (-3)^2 = 15 \times (16x^4) \times 9 = 15 \times (144x^4) = 2160x^4$
Term 4: $\binom{6}{3}(2x)^3 (-3)^3 = 20 \times (8x^3) \times (-27) = 20 \times (-216x^3) = -4320x^3$
Term 5: $\binom{6}{4}(2x)^2 (-3)^4 = 15 \times (4x^2) \times 81 = 15 \times (324x^2) = 4860x^2$
Term 6: $\binom{6}{5}(2x)^1 (-3)^5 = 6 \times (2x) \times (-243) = 6 \times (-486x) = -2916x$
Term 7: $\binom{6}{6}(2x)^0 (-3)^6 = 1 \times 1 \times 729 = 729$
Adding the terms together, we get the expanded form:
$(2x - 3)^6 = 64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729$
The expanded form is:
$\mathbf{(2x - 3)^6 = 64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729}$
Question 4. $\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$
Answer:
Given expression:
$\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$
This expression is in the form $(a+b)^n$, where $a = \frac{x}{3}$, $b = \frac{1}{x}$, and $n = 5$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + ... + \binom{n}{n}a^0 b^n$
For $n=5$, the expansion of $\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$ is:
$\binom{5}{0}\left(\frac{x}{3}\right)^5 \left(\frac{1}{x}\right)^0 + \binom{5}{1}\left(\frac{x}{3}\right)^4 \left(\frac{1}{x}\right)^1 + \binom{5}{2}\left(\frac{x}{3}\right)^3 \left(\frac{1}{x}\right)^2 + \binom{5}{3}\left(\frac{x}{3}\right)^2 \left(\frac{1}{x}\right)^3 + \binom{5}{4}\left(\frac{x}{3}\right)^1 \left(\frac{1}{x}\right)^4 + \binom{5}{5}\left(\frac{x}{3}\right)^0 \left(\frac{1}{x}\right)^5$
Now, we calculate each term:
Term 1: $\binom{5}{0}\left(\frac{x}{3}\right)^5 \left(\frac{1}{x}\right)^0 = 1 \times \frac{x^5}{3^5} \times 1 = \frac{x^5}{243}$
Term 2: $\binom{5}{1}\left(\frac{x}{3}\right)^4 \left(\frac{1}{x}\right)^1 = 5 \times \frac{x^4}{3^4} \times \frac{1}{x} = 5 \times \frac{x^4}{81} \times \frac{1}{x} = 5 \times \frac{x^{4-1}}{81} = 5 \times \frac{x^3}{81} = \frac{5x^3}{81}$
Term 3: $\binom{5}{2}\left(\frac{x}{3}\right)^3 \left(\frac{1}{x}\right)^2 = 10 \times \frac{x^3}{3^3} \times \frac{1}{x^2} = 10 \times \frac{x^3}{27} \times \frac{1}{x^2} = 10 \times \frac{x^{3-2}}{27} = 10 \times \frac{x}{27} = \frac{10x}{27}$
Term 4: $\binom{5}{3}\left(\frac{x}{3}\right)^2 \left(\frac{1}{x}\right)^3 = 10 \times \frac{x^2}{3^2} \times \frac{1}{x^3} = 10 \times \frac{x^2}{9} \times \frac{1}{x^3} = 10 \times \frac{x^{2-3}}{9} = 10 \times \frac{x^{-1}}{9} = 10 \times \frac{1}{9x} = \frac{10}{9x}$
Term 5: $\binom{5}{4}\left(\frac{x}{3}\right)^1 \left(\frac{1}{x}\right)^4 = 5 \times \frac{x}{3} \times \frac{1}{x^4} = 5 \times \frac{x^{1-4}}{3} = 5 \times \frac{x^{-3}}{3} = 5 \times \frac{1}{3x^3} = \frac{5}{3x^3}$
Term 6: $\binom{5}{5}\left(\frac{x}{3}\right)^0 \left(\frac{1}{x}\right)^5 = 1 \times 1 \times \frac{1}{x^5} = \frac{1}{x^5}$
Adding the terms together, we get the expanded form:
$\left( \frac{x}{3}+\frac{1}{x} \right)^{5} = \frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}$
The expanded form is:
$\mathbf{\left( \frac{x}{3}+\frac{1}{x} \right)^{5} = \frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}}$
Question 5. $\left( x+\frac{1}{x} \right)^{6}$
Answer:
Given expression:
$\left( x+\frac{1}{x} \right)^{6}$
This expression is in the form $(a+b)^n$, where $a = x$, $b = \frac{1}{x}$, and $n = 6$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + ... + \binom{n}{n}a^0 b^n$
For $n=6$, the expansion of $\left( x+\frac{1}{x} \right)^{6}$ is:
$\binom{6}{0}(x)^6 \left(\frac{1}{x}\right)^0 + \binom{6}{1}(x)^5 \left(\frac{1}{x}\right)^1 + \binom{6}{2}(x)^4 \left(\frac{1}{x}\right)^2 + \binom{6}{3}(x)^3 \left(\frac{1}{x}\right)^3 + \binom{6}{4}(x)^2 \left(\frac{1}{x}\right)^4 + \binom{6}{5}(x)^1 \left(\frac{1}{x}\right)^5 + \binom{6}{6}(x)^0 \left(\frac{1}{x}\right)^6$
Now, we calculate each term:
Term 1: $\binom{6}{0}(x)^6 \left(\frac{1}{x}\right)^0 = 1 \times x^6 \times 1 = x^6$
Term 2: $\binom{6}{1}(x)^5 \left(\frac{1}{x}\right)^1 = 6 \times x^5 \times \frac{1}{x} = 6 \times x^{5-1} = 6x^4$
Term 3: $\binom{6}{2}(x)^4 \left(\frac{1}{x}\right)^2 = 15 \times x^4 \times \frac{1}{x^2} = 15 \times x^{4-2} = 15x^2$
Term 4: $\binom{6}{3}(x)^3 \left(\frac{1}{x}\right)^3 = 20 \times x^3 \times \frac{1}{x^3} = 20 \times x^{3-3} = 20 \times x^0 = 20 \times 1 = 20$
Term 5: $\binom{6}{4}(x)^2 \left(\frac{1}{x}\right)^4 = 15 \times x^2 \times \frac{1}{x^4} = 15 \times x^{2-4} = 15x^{-2} = \frac{15}{x^2}$
Term 6: $\binom{6}{5}(x)^1 \left(\frac{1}{x}\right)^5 = 6 \times x^1 \times \frac{1}{x^5} = 6 \times x^{1-5} = 6x^{-4} = \frac{6}{x^4}$
Term 7: $\binom{6}{6}(x)^0 \left(\frac{1}{x}\right)^6 = 1 \times 1 \times \frac{1}{x^6} = \frac{1}{x^6}$
Adding the terms together, we get the expanded form:
$\left( x+\frac{1}{x} \right)^{6} = x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}$
The expanded form is:
$\mathbf{\left( x+\frac{1}{x} \right)^{6} = x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}}$
Using binomial theorem, evaluate each of the following:
Question 6. (96)3
Answer:
Given expression:
$(96)^3$
We can write 96 as $100 - 4$. So, we need to evaluate $(100 - 4)^3$.
This is in the form $(a-b)^n$, where $a = 100$, $b = 4$, and $n = 3$.
We use the Binomial Theorem for expansion:
$(a-b)^n = \binom{n}{0}a^n b^0 - \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 - ... + (-1)^n \binom{n}{n}a^0 b^n$
For $n=3$, the expansion of $(100 - 4)^3$ is:
$(100 - 4)^3 = \binom{3}{0}(100)^3 (4)^0 - \binom{3}{1}(100)^2 (4)^1 + \binom{3}{2}(100)^1 (4)^2 - \binom{3}{3}(100)^0 (4)^3$
Now, we calculate each term:
Term 1: $\binom{3}{0}(100)^3 (4)^0 = 1 \times (1000000) \times 1 = 1000000$
Term 2: $-\binom{3}{1}(100)^2 (4)^1 = -3 \times (10000) \times 4 = -3 \times 40000 = -120000$
Term 3: $+\binom{3}{2}(100)^1 (4)^2 = +3 \times 100 \times 16 = +300 \times 16 = +4800$
Term 4: $-\binom{3}{3}(100)^0 (4)^3 = -1 \times 1 \times 64 = -64$
Adding the terms together:
$(96)^3 = 1000000 - 120000 + 4800 - 64$
$(96)^3 = 880000 + 4800 - 64$
$(96)^3 = 884800 - 64$
$(96)^3 = 884736$
The evaluated value is:
$(96)^3 = \mathbf{884736}$
Question 7. (102)5
Answer:
Given expression:
$(102)^5$
We can write 102 as $100 + 2$. So, we need to evaluate $(100 + 2)^5$.
This is in the form $(a+b)^n$, where $a = 100$, $b = 2$, and $n = 5$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + ... + \binom{n}{n}a^0 b^n$
For $n=5$, the expansion of $(100 + 2)^5$ is:
$(100 + 2)^5 = \binom{5}{0}(100)^5 (2)^0 + \binom{5}{1}(100)^4 (2)^1 + \binom{5}{2}(100)^3 (2)^2 + \binom{5}{3}(100)^2 (2)^3 + \binom{5}{4}(100)^1 (2)^4 + \binom{5}{5}(100)^0 (2)^5$
Now, we calculate each term:
Term 1: $\binom{5}{0}(100)^5 (2)^0 = 1 \times 10^{10} \times 1 = 10,000,000,000$
Term 2: $\binom{5}{1}(100)^4 (2)^1 = 5 \times 10^8 \times 2 = 10 \times 100,000,000 = 1,000,000,000$
Term 3: $\binom{5}{2}(100)^3 (2)^2 = 10 \times 10^6 \times 4 = 40 \times 1,000,000 = 40,000,000$
Term 4: $\binom{5}{3}(100)^2 (2)^3 = 10 \times 10^4 \times 8 = 80 \times 10,000 = 800,000$
Term 5: $\binom{5}{4}(100)^1 (2)^4 = 5 \times 100 \times 16 = 500 \times 16 = 8,000$
Term 6: $\binom{5}{5}(100)^0 (2)^5 = 1 \times 1 \times 32 = 32$
Adding the terms together:
$(102)^5 = 10,000,000,000 + 1,000,000,000 + 40,000,000 + 800,000 + 8,000 + 32$
$(102)^5 = 11,000,000,000 + 40,000,000 + 800,000 + 8,000 + 32$
$(102)^5 = 11,040,000,000 + 800,000 + 8,000 + 32$
$(102)^5 = 11,040,800,000 + 8,000 + 32$
$(102)^5 = 11,040,808,000 + 32$
$(102)^5 = 11,040,808,032$
The evaluated value is:
$(102)^5 = \mathbf{11,040,808,032}$
Question 8. (101)4
Answer:
Given expression:
$(101)^4$
We can write 101 as $100 + 1$. So, we need to evaluate $(100 + 1)^4$.
This is in the form $(a+b)^n$, where $a = 100$, $b = 1$, and $n = 4$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + \binom{n}{4}a^{n-4} b^4$
For $n=4$, the expansion of $(100 + 1)^4$ is:
$(100 + 1)^4 = \binom{4}{0}(100)^4 (1)^0 + \binom{4}{1}(100)^3 (1)^1 + \binom{4}{2}(100)^2 (1)^2 + \binom{4}{3}(100)^1 (1)^3 + \binom{4}{4}(100)^0 (1)^4$
Now, we calculate each term:
Term 1: $\binom{4}{0}(100)^4 (1)^0 = 1 \times 10^8 \times 1 = 100,000,000$
Term 2: $\binom{4}{1}(100)^3 (1)^1 = 4 \times 10^6 \times 1 = 4 \times 1,000,000 = 4,000,000$
Term 3: $\binom{4}{2}(100)^2 (1)^2 = 6 \times 10^4 \times 1 = 6 \times 10,000 = 60,000$
Term 4: $\binom{4}{3}(100)^1 (1)^3 = 4 \times 100 \times 1 = 400$
Term 5: $\binom{4}{4}(100)^0 (1)^4 = 1 \times 1 \times 1 = 1$
Adding the terms together:
$(101)^4 = 100,000,000 + 4,000,000 + 60,000 + 400 + 1$
$(101)^4 = 104,000,000 + 60,000 + 400 + 1$
$(101)^4 = 104,060,000 + 400 + 1$
$(101)^4 = 104,060,400 + 1$
$(101)^4 = 104,060,401$
The evaluated value is:
$(101)^4 = \mathbf{104,060,401}$
Question 9. (99)5
Answer:
Given expression:
$(99)^5$
We can write 99 as $100 - 1$. So, we need to evaluate $(100 - 1)^5$.
This is in the form $(a-b)^n$, where $a = 100$, $b = 1$, and $n = 5$.
We use the Binomial Theorem for expansion:
$(a-b)^n = \binom{n}{0}a^n b^0 - \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 - \binom{n}{3}a^{n-3} b^3 + \binom{n}{4}a^{n-4} b^4 - \binom{n}{5}a^{n-5} b^5$
For $n=5$, the expansion of $(100 - 1)^5$ is:
$(100 - 1)^5 = \binom{5}{0}(100)^5 (1)^0 - \binom{5}{1}(100)^4 (1)^1 + \binom{5}{2}(100)^3 (1)^2 - \binom{5}{3}(100)^2 (1)^3 + \binom{5}{4}(100)^1 (1)^4 - \binom{5}{5}(100)^0 (1)^5$
Now, we calculate each term:
Term 1: $\binom{5}{0}(100)^5 (1)^0 = 1 \times 10^{10} \times 1 = 10,000,000,000$
Term 2: $-\binom{5}{1}(100)^4 (1)^1 = -5 \times 10^8 \times 1 = -5 \times 100,000,000 = -500,000,000$
Term 3: $\binom{5}{2}(100)^3 (1)^2 = 10 \times 10^6 \times 1 = 10 \times 1,000,000 = 10,000,000$
Term 4: $-\binom{5}{3}(100)^2 (1)^3 = -10 \times 10^4 \times 1 = -10 \times 10,000 = -100,000$
Term 5: $\binom{5}{4}(100)^1 (1)^4 = 5 \times 100 \times 1 = 500$
Term 6: $-\binom{5}{5}(100)^0 (1)^5 = -1 \times 1 \times 1 = -1$
Adding the terms together:
$(99)^5 = 10,000,000,000 - 500,000,000 + 10,000,000 - 100,000 + 500 - 1$
$(99)^5 = 9,500,000,000 + 10,000,000 - 100,000 + 500 - 1$
$(99)^5 = 9,510,000,000 - 100,000 + 500 - 1$
$(99)^5 = 9,509,900,000 + 500 - 1$
$(99)^5 = 9,509,900,500 - 1$
$(99)^5 = 9,509,900,499$
The evaluated value is:
$(99)^5 = \mathbf{9,509,900,499}$
Question 10. Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Answer:
We need to compare the values of $(1.1)^{10000}$ and $1000$.
Consider the expression $(1.1)^{10000}$.
We can write $1.1$ as $1 + 0.1$.
So, $(1.1)^{10000} = (1 + 0.1)^{10000}$.
We can expand this expression using the Binomial Theorem for $(1+x)^n$, which is given by:
$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + ... + \binom{n}{n}x^n$
In this case, $x = 0.1$ and $n = 10000$.
Expanding $(1 + 0.1)^{10000}$:
$(1 + 0.1)^{10000} = \binom{10000}{0} + \binom{10000}{1}(0.1) + \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + ... + \binom{10000}{10000}(0.1)^{10000}$
Let's calculate the first two terms of the expansion:
The first term is $\binom{10000}{0} = 1$.
The second term is $\binom{10000}{1}(0.1) = 10000 \times 0.1 = 1000$.
So, the expansion can be written as:
$(1.1)^{10000} = 1 + 1000 + \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + ... + \binom{10000}{10000}(0.1)^{10000}$
$(1.1)^{10000} = 1001 + \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + ... + \binom{10000}{10000}(0.1)^{10000}$
The terms $\binom{10000}{k}(0.1)^k$ for $k \geq 2$ are all positive because $\binom{10000}{k}$ is positive for $k \geq 0$, and $(0.1)^k$ is positive for $k \geq 2$.
The sum of these positive terms is a positive value.
Let $S = \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + ... + \binom{10000}{10000}(0.1)^{10000}$. Here $S > 0$.
So, $(1.1)^{10000} = 1001 + S$.
Since $S$ is a positive value, $1001 + S$ is greater than $1001$.
$(1.1)^{10000} > 1001$
We are comparing $(1.1)^{10000}$ with $1000$.
Since $(1.1)^{10000} > 1001$ and $1001 > 1000$, by transitivity, we have $(1.1)^{10000} > 1000$.
Therefore, using the Binomial Theorem, we can conclude that $\mathbf{(1.1)^{10000}}$ is larger than $1000$.
Question 11. Find (a + b)4 – (a – b)4 . Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$ .
Answer:
First, let's find the expansion of $(a+b)^4$ and $(a-b)^4$ using the Binomial Theorem.
The expansion of $(a+b)^4$ is:
$(a+b)^4 = \binom{4}{0}a^4 b^0 + \binom{4}{1}a^3 b^1 + \binom{4}{2}a^2 b^2 + \binom{4}{3}a^1 b^3 + \binom{4}{4}a^0 b^4$
$(a+b)^4 = 1 \cdot a^4 \cdot 1 + 4 \cdot a^3 b + 6 \cdot a^2 b^2 + 4 \cdot a b^3 + 1 \cdot 1 \cdot b^4$
$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
The expansion of $(a-b)^4$ is:
$(a-b)^4 = \binom{4}{0}a^4 (-b)^0 + \binom{4}{1}a^3 (-b)^1 + \binom{4}{2}a^2 (-b)^2 + \binom{4}{3}a^1 (-b)^3 + \binom{4}{4}a^0 (-b)^4$
$(a-b)^4 = 1 \cdot a^4 \cdot 1 + 4 \cdot a^3 (-b) + 6 \cdot a^2 b^2 + 4 \cdot a (-b^3) + 1 \cdot 1 \cdot b^4$
$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$
Now, we subtract $(a-b)^4$ from $(a+b)^4$:
$(a+b)^4 - (a-b)^4 = (a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4) - (a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4)$
$(a+b)^4 - (a-b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 - a^4 + 4a^3b - 6a^2b^2 + 4ab^3 - b^4$
Combine like terms:
$(a+b)^4 - (a-b)^4 = (a^4 - a^4) + (4a^3b + 4a^3b) + (6a^2b^2 - 6a^2b^2) + (4ab^3 + 4ab^3) + (b^4 - b^4)$
$(a+b)^4 - (a-b)^4 = 0 + 8a^3b + 0 + 8ab^3 + 0$
$(a+b)^4 - (a-b)^4 = 8a^3b + 8ab^3$
Factor out $8ab$:
$(a+b)^4 - (a-b)^4 = 8ab(a^2 + b^2)$
Now, we need to evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$.
This expression is in the form $(a+b)^4 - (a-b)^4$, where $a = \sqrt{3}$ and $b = \sqrt{2}$.
Using the derived formula $8ab(a^2 + b^2)$:
Substitute $a = \sqrt{3}$ and $b = \sqrt{2}$:
$8(\sqrt{3})(\sqrt{2})((\sqrt{3})^2 + (\sqrt{2})^2)$
Calculate the terms inside the expression:
$(\sqrt{3})(\sqrt{2}) = \sqrt{3 \times 2} = \sqrt{6}$
$(\sqrt{3})^2 = 3$
$(\sqrt{2})^2 = 2$
$(\sqrt{3})^2 + (\sqrt{2})^2 = 3 + 2 = 5$
Substitute these values back into the formula:
$8(\sqrt{6})(5)$
$8 \times 5 \times \sqrt{6} = 40\sqrt{6}$
The value of $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$ is $\mathbf{40\sqrt{6}}$.
Question 12. Find (x + 1)6 + (x – 1)6 . Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$ .
Answer:
First, let's find the expansion of $(x+1)^6$ and $(x-1)^6$ using the Binomial Theorem.
The expansion of $(x+1)^6$ is of the form $(a+b)^n$ with $a=x$, $b=1$, $n=6$.
$(x+1)^6 = \binom{6}{0}x^6 1^0 + \binom{6}{1}x^5 1^1 + \binom{6}{2}x^4 1^2 + \binom{6}{3}x^3 1^3 + \binom{6}{4}x^2 1^4 + \binom{6}{5}x^1 1^5 + \binom{6}{6}x^0 1^6$
$(x+1)^6 = 1 \cdot x^6 + 6 \cdot x^5 \cdot 1 + 15 \cdot x^4 \cdot 1 + 20 \cdot x^3 \cdot 1 + 15 \cdot x^2 \cdot 1 + 6 \cdot x \cdot 1 + 1 \cdot 1 \cdot 1$
$(x+1)^6 = x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$
The expansion of $(x-1)^6$ is of the form $(a-b)^n$ with $a=x$, $b=1$, $n=6$. The signs of terms with odd powers of the second term ($(-1)^k$) will be negative.
$(x-1)^6 = \binom{6}{0}x^6 (-1)^0 + \binom{6}{1}x^5 (-1)^1 + \binom{6}{2}x^4 (-1)^2 + \binom{6}{3}x^3 (-1)^3 + \binom{6}{4}x^2 (-1)^4 + \binom{6}{5}x^1 (-1)^5 + \binom{6}{6}x^0 (-1)^6$
$(x-1)^6 = 1 \cdot x^6 \cdot 1 + 6 \cdot x^5 \cdot (-1) + 15 \cdot x^4 \cdot 1 + 20 \cdot x^3 \cdot (-1) + 15 \cdot x^2 \cdot 1 + 6 \cdot x \cdot (-1) + 1 \cdot 1 \cdot 1$
$(x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$
Now, we add $(x+1)^6$ and $(x-1)^6$:
$(x+1)^6 + (x-1)^6 = (x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1) + (x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1)$
Combine like terms:
$(x+1)^6 + (x-1)^6 = (x^6 + x^6) + (6x^5 - 6x^5) + (15x^4 + 15x^4) + (20x^3 - 20x^3) + (15x^2 + 15x^2) + (6x - 6x) + (1 + 1)$
$(x+1)^6 + (x-1)^6 = 2x^6 + 0 + 30x^4 + 0 + 30x^2 + 0 + 2$
$(x+1)^6 + (x-1)^6 = 2x^6 + 30x^4 + 30x^2 + 2$
Factor out 2:
$(x+1)^6 + (x-1)^6 = 2(x^6 + 15x^4 + 15x^2 + 1)$
Now, we need to evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$.
This expression is in the form $(x+1)^6 + (x-1)^6$, where $x = \sqrt{2}$.
Using the derived formula $2(x^6 + 15x^4 + 15x^2 + 1)$:
Substitute $x = \sqrt{2}$:
$2((\sqrt{2})^6 + 15(\sqrt{2})^4 + 15(\sqrt{2})^2 + 1)$
Calculate the powers of $\sqrt{2}$:
$(\sqrt{2})^2 = 2$
$(\sqrt{2})^4 = ((\sqrt{2})^2)^2 = 2^2 = 4$
$(\sqrt{2})^6 = ((\sqrt{2})^2)^3 = 2^3 = 8$
Substitute these values back into the expression:
$2(8 + 15(4) + 15(2) + 1)$
$2(8 + 60 + 30 + 1)$
$2(68 + 30 + 1)$
$2(98 + 1)$
$2(99)$
$2 \times 99 = 198$
The value of $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$ is $\mathbf{198}$.
Question 13. Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Answer:
To Show:
The expression $9^{n+1} - 8n - 9$ is divisible by 64 for any positive integer $n$.
This is equivalent to showing that $9^{n+1} - 8n - 9 \equiv 0 \pmod{64}$, or $9^{n+1} - 8n - 9 = 64K$ for some integer $K$.
Proof:
Consider the term $9^{n+1}$. We can write $9$ as $1 + 8$.
So, $9^{n+1} = (1 + 8)^{n+1}$.
Using the Binomial Theorem for a positive integer $n$, the expansion of $(1+x)^m$ is given by:
$(1+x)^m = \binom{m}{0} + \binom{m}{1}x + \binom{m}{2}x^2 + \binom{m}{3}x^3 + ... + \binom{m}{m}x^m$
Substitute $x = 8$ and $m = n+1$ into the binomial expansion of $(1+8)^{n+1}$:
$9^{n+1} = (1+8)^{n+1} = \binom{n+1}{0}1^{n+1} 8^0 + \binom{n+1}{1}1^n 8^1 + \binom{n+1}{2}1^{n-1} 8^2 + \binom{n+1}{3}1^{n-2} 8^3 + ... + \binom{n+1}{n+1}1^0 8^{n+1}$
$9^{n+1} = \binom{n+1}{0} + \binom{n+1}{1}8 + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + ... + \binom{n+1}{n+1}8^{n+1}$
We know that $\binom{n+1}{0} = 1$ and $\binom{n+1}{1} = n+1$. Also, $8^2 = 64$, $8^3 = 512$, and so on.
So, the expansion becomes:
$9^{n+1} = 1 + (n+1) \times 8 + \binom{n+1}{2} \times 64 + \binom{n+1}{3} \times 512 + ... + \binom{n+1}{n+1} \times 8^{n+1}$
$9^{n+1} = 1 + 8(n+1) + 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}$
$9^{n+1} = 1 + 8n + 8 + 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}$
$9^{n+1} = 9 + 8n + 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}$
Now, consider the expression $9^{n+1} - 8n - 9$. Substitute the expansion of $9^{n+1}$ into this expression:
$9^{n+1} - 8n - 9 = (9 + 8n + 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}) - 8n - 9$
$9^{n+1} - 8n - 9 = (9 - 9) + (8n - 8n) + 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}$
$9^{n+1} - 8n - 9 = 0 + 0 + 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}$
$9^{n+1} - 8n - 9 = 64\binom{n+1}{2} + 512\binom{n+1}{3} + ... + 8^{n+1}\binom{n+1}{n+1}$
For $n=1$: The expression is $9^2 - 8(1) - 9 = 81 - 8 - 9 = 64$. $64$ is divisible by $64$.
Using the formula for $n=1$: $9^{1+1} - 8(1) - 9 = 64\binom{1+1}{2} + 512\binom{1+1}{3} + ... = 64\binom{2}{2} + 512\binom{2}{3} + ... = 64(1) + 512(0) + ... = 64$. This confirms the formula holds for $n=1$. For $n=1$, the expansion stops at the term with $8^2 = 64$.
For $n \geq 1$, every term $8^k \binom{n+1}{k}$ for $k \geq 2$ in the expansion of $9^{n+1} - 8n - 9$ has a factor of $8^2 = 64$ because $8^k = 8^{k-2} \times 8^2 = 8^{k-2} \times 64$.
We can factor out 64 from all the terms:
$9^{n+1} - 8n - 9 = 64\binom{n+1}{2} + 64 \times 8\binom{n+1}{3} + ... + 64 \times 8^{n-1}\binom{n+1}{n+1}$
$9^{n+1} - 8n - 9 = 64\left[\binom{n+1}{2} + 8\binom{n+1}{3} + ... + 8^{n-1}\binom{n+1}{n+1}\right]$
Let $K = \binom{n+1}{2} + 8\binom{n+1}{3} + ... + 8^{n-1}\binom{n+1}{n+1}$. Since $n$ is a positive integer, $\binom{n+1}{k}$ are integers, and powers of 8 are integers, $K$ is an integer for $n \geq 1$.
So, for any positive integer $n$, we can write:
$9^{n+1} - 8n - 9 = 64K$
where $K$ is an integer.
This shows that $9^{n+1} - 8n - 9$ is a multiple of 64 for any positive integer $n$.
Therefore, $9^{n+1} - 8n - 9$ is divisible by 64 whenever $n$ is a positive integer.
Hence Showed.
Question 14. Prove that $\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$ .
Answer:
To Prove:
$\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$
Proof:
We start with the statement of the Binomial Theorem for $(a+b)^n$:
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^r$
We can rewrite $\binom{n}{r}$ as $^nC_r$. So, the Binomial Theorem is:
$(a+b)^n = \sum\limits_{r=0}^{n} ^nC_r a^{n-r} b^r$
We want the summation to match the form $\sum\limits_{r=0}^{n} 3^r\; ^nC_r$.
Comparing the term $^nC_r 3^r$ with the general term $^nC_r a^{n-r} b^r$, we can see that the exponent of $a$ in the sum is 0 ($n-r = n-r$) and the exponent of $b$ is $r$.
This suggests we can choose the values of $a$ and $b$ appropriately.
If we choose $b = 3$, the term becomes $^nC_r a^{n-r} 3^r$.
To get the desired form $^nC_r 3^r$, we need the term $a^{n-r}$ to be 1 for all $r$ from 0 to $n$. This can be achieved by setting $a=1$, since $1^{n-r} = 1$ for any non-negative integer $n-r$.
Let's substitute $a=1$ and $b=3$ into the Binomial Theorem:
$(1+3)^n = \sum\limits_{r=0}^{n} ^nC_r (1)^{n-r} (3)^r$
$(1+3)^n = \sum\limits_{r=0}^{n} ^nC_r \times 1 \times 3^r$
$(1+3)^n = \sum\limits_{r=0}^{n} ^nC_r 3^r$
The left side of the equation is $(1+3)^n = 4^n$.
The right side of the equation is $\sum\limits_{r=0}^{n} ^nC_r 3^r$, which is the same as $\sum\limits_{r=0}^{n} 3^r\; ^nC_r$.
Therefore, we have shown that:
$4^n = \sum\limits_{r=0}^{n} 3^r\; ^nC_r$
Or, written in the requested format:
$\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$
Hence Proved.
Example 5 to 9 (Before Exercise 8.2)
Example 5: Find a if the 17th and 18th terms of the expansion (2 + a)50 are equal
Answer:
Given expansion:
$(2 + a)^{50}$
This is in the form $(x+y)^n$, where $x = 2$, $y = a$, and $n = 50$.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(x+y)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} x^{n-r} y^r$
We are given that the 17th term and the 18th term of the expansion are equal.
The 17th term corresponds to $r+1 = 17$, so $r = 16$.
$T_{17} = T_{16+1} = \binom{50}{16} (2)^{50-16} (a)^{16} = \binom{50}{16} 2^{34} a^{16}$
The 18th term corresponds to $r+1 = 18$, so $r = 17$.
$T_{18} = T_{17+1} = \binom{50}{17} (2)^{50-17} (a)^{17} = \binom{50}{17} 2^{33} a^{17}$
We are given that $T_{17} = T_{18}$.
$\binom{50}{16} 2^{34} a^{16} = \binom{50}{17} 2^{33} a^{17}$
We know the formula for binomial coefficients: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
$\binom{50}{16} = \frac{50!}{16!(50-16)!} = \frac{50!}{16!34!}$
$\binom{50}{17} = \frac{50!}{17!(50-17)!} = \frac{50!}{17!33!}$
Substitute these into the equation:
$\frac{50!}{16!34!} \times 2^{34} \times a^{16} = \frac{50!}{17!33!} \times 2^{33} \times a^{17}$
We can simplify the factorials: $17! = 17 \times 16!$ and $34! = 34 \times 33!$.
$\frac{50!}{16! (34 \times 33!)} \times 2^{34} \times a^{16} = \frac{50!}{(17 \times 16!) 33!} \times 2^{33} \times a^{17}$
Cancel out the common terms $\frac{50!}{16!33!}$ from both sides (assuming $a \neq 0$ and the terms are non-zero):
$\frac{1}{34} \times 2^{34} \times a^{16} = \frac{1}{17} \times 2^{33} \times a^{17}$
Also, $2^{34} = 2 \times 2^{33}$ and $a^{17} = a \times a^{16}$.
$\frac{1}{34} \times (2 \times 2^{33}) \times a^{16} = \frac{1}{17} \times 2^{33} \times (a \times a^{16})$
$\frac{2}{34} \times 2^{33} \times a^{16} = \frac{1}{17} \times 2^{33} \times a^{16} \times a$
$\frac{1}{17} \times 2^{33} \times a^{16} = \frac{1}{17} \times 2^{33} \times a^{16} \times a$
If $2^{33} a^{16} \neq 0$, we can divide both sides by $\frac{1}{17} \times 2^{33} \times a^{16}$.
Note that $a=0$ would make $T_{18}=0$, but $T_{17}$ would be $\binom{50}{16} 2^{34} \neq 0$, so $T_{17} \neq T_{18}$. Thus $a \neq 0$.
Dividing by $\frac{1}{17} \times 2^{33} \times a^{16}$:
$1 = a$
Alternatively, from $\frac{1}{34} \times 2^{34} \times a^{16} = \frac{1}{17} \times 2^{33} \times a^{17}$, rearrange to solve for $a$ (assuming $a \neq 0$):
$\frac{a^{17}}{a^{16}} = \frac{\frac{1}{34} \times 2^{34}}{\frac{1}{17} \times 2^{33}}$
$a = \frac{1}{34} \times 2^{34} \times \frac{17}{1} \times \frac{1}{2^{33}}$
$a = \frac{17}{34} \times \frac{2^{34}}{2^{33}}$
$a = \frac{1}{2} \times 2^{34-33}$
$a = \frac{1}{2} \times 2^1$
$a = \frac{1}{2} \times 2 = 1$
The value of $a$ is 1.
Example 6: Show that the middle term in the expansion of (1 + x)2n is $\frac{1.3.5...(2n \;-\; 1)}{n!}$ 2n xn , where n is a positive integer
Answer:
Given expansion:
$(1 + x)^{2n}$
This is in the form $(a+b)^m$, where $a = 1$, $b = x$, and $m = 2n$.
The total number of terms in the expansion is $m+1 = 2n+1$.
To Find:
The middle term of the expansion.
Solution:
Since the number of terms ($2n+1$) is odd, there is exactly one middle term.
The position of the middle term is $\left(\frac{(2n+1)+1}{2}\right)^{\text{th}}$ term.
Middle term position = $\left(\frac{2n+2}{2}\right)^{\text{th}}$ term = $(n+1)^{\text{th}}$ term.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^m$ is given by the formula:
$T_{r+1} = \binom{m}{r} a^{m-r} b^r$
For the $(n+1)^{\text{th}}$ term, we have $r+1 = n+1$, so $r = n$.
Substitute $m=2n$, $a=1$, $b=x$, and $r=n$ into the general term formula:
$T_{n+1} = \binom{2n}{n} (1)^{2n-n} (x)^n = \binom{2n}{n} (1)^n x^n = \binom{2n}{n} x^n$
Now, we need to express the binomial coefficient $\binom{2n}{n}$ in the desired form.
$\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!}$
Expand $(2n)!$:
$(2n)! = (2n) \times (2n-1) \times (2n-2) \times (2n-3) \times ... \times 4 \times 3 \times 2 \times 1$
We can separate the even and odd factors in $(2n)!$:
$(2n)! = [(2n) \times (2n-2) \times (2n-4) \times ... \times 4 \times 2] \times [(2n-1) \times (2n-3) \times ... \times 3 \times 1]$
The first bracket contains $n$ even terms. We can factor out 2 from each even term:
$(2n) \times (2n-2) \times ... \times 4 \times 2 = (2 \times n) \times (2 \times (n-1)) \times ... \times (2 \times 2) \times (2 \times 1)$
$= 2^n \times [n \times (n-1) \times ... \times 2 \times 1] = 2^n \times n!$
The second bracket contains the product of $n$ odd numbers:
$(2n-1) \times (2n-3) \times ... \times 3 \times 1 = 1 \times 3 \times 5 \times ... \times (2n-1)$
So, $(2n)! = (2^n \times n!) \times (1 \times 3 \times 5 \times ... \times (2n-1))$
Now substitute this back into the expression for $\binom{2n}{n}$:
$\binom{2n}{n} = \frac{(2n)!}{n!n!} = \frac{(2^n \times n!) \times (1 \times 3 \times 5 \times ... \times (2n-1))}{n!n!}$
Cancel one $n!$ from the numerator and denominator:
$\binom{2n}{n} = \frac{2^n \times (1 \times 3 \times 5 \times ... \times (2n-1))}{n!}$
$\binom{2n}{n} = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{n!} \times 2^n$
Substitute this expression for $\binom{2n}{n}$ back into the middle term $T_{n+1} = \binom{2n}{n} x^n$:
$T_{n+1} = \left(\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{n!} \times 2^n\right) x^n$
$T_{n+1} = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{n!} 2^n x^n$
This matches the form given in the question, except for the factor of 2n, which seems to be a typo in the question (it should be $2^n$). Let's double check the calculation and the requested form.
The requested form is $\frac{1.3.5...(2n \;-\; 1)}{n!}$ 2n xn. There seems to be a discrepancy with the factor of 2n vs $2^n$. Let's assume the question meant $2^n$. If the question meant 2n as a coefficient, it would have to come from somewhere else, which isn't apparent from the expansion.
Let's proceed assuming the question meant $2^n$.
The middle term is $T_{n+1} = \binom{2n}{n} x^n$. We have shown that $\binom{2n}{n} = \frac{(2n)!}{(n!)^2} = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1) \cdot 2^n \cdot n!}{n! \cdot n!} = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1) \cdot 2^n}{n!}$.
So, $T_{n+1} = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1) \cdot 2^n}{n!} x^n$.
This is exactly the form $\frac{1.3.5...(2n \;-\; 1)}{n!} 2^n x^n$.
If the question specifically meant 2n instead of $2^n$, there might be a different approach or a typo in the question itself.
Assuming the question has a typo and meant $2^n$ instead of 2n, the proof is complete.
If the question is exactly as written, it is likely incorrect or requires manipulation that is not standard Binomial Theorem expansion. The standard middle term is $\binom{2n}{n} x^n$.
Let's re-read the question carefully. "Show that the middle term ... is $\frac{1.3.5...(2n \;-\; 1)}{n!}$ 2n xn". Yes, it explicitly says 2n.
Let's re-examine the binomial coefficient $\binom{2n}{n} = \frac{(2n)!}{n!n!}$.
$\binom{2n}{n} = \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot (2n-1) \cdot (2n)}{n! n!}$
Maybe the 2n comes from somewhere else?
Let's look at the structure $\frac{1.3.5...(2n \;-\; 1)}{n!} \times 2n \times x^n$.
This equals $\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{n!} \times 2n \times x^n$.
The binomial coefficient is $\frac{(2n)!}{(n!)^2} = \frac{1 \cdot 3 \cdot ... \cdot (2n-1) \cdot 2 \cdot 4 \cdot ... \cdot (2n)}{n! n!} = \frac{1 \cdot 3 \cdot ... \cdot (2n-1) \cdot 2^n \cdot n!}{n! n!} = \frac{1 \cdot 3 \cdot ... \cdot (2n-1) \cdot 2^n}{n!}$.
So the middle term is $\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1) \cdot 2^n}{n!} x^n$.
There is a factor of $2^n$ in the correct expansion, not $2n$. It is highly probable that there is a typo in the question statement and 2n should be $2^n$.
Assuming the question meant $2^n$, the proof above is correct.
Let's write the answer based on the assumption of the typo.
The middle term in the expansion of $(1+x)^{2n}$ is the $(n+1)^{\text{th}}$ term.
$T_{n+1} = \binom{2n}{n} 1^{2n-n} x^n = \binom{2n}{n} x^n$
We have $\binom{2n}{n} = \frac{(2n)!}{n!n!}$
$(2n)! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot (2n-1) \cdot (2n)$
$(2n)! = [1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)] \times [2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)]$
$(2n)! = [1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)] \times [2 \cdot (2 \times 2) \cdot (2 \times 3) \cdot ... \cdot (2 \times n)]$
$(2n)! = [1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)] \times [2^n \cdot (1 \cdot 2 \cdot 3 \cdot ... \cdot n)]$
$(2n)! = [1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)] \times 2^n \times n!$
So, $\binom{2n}{n} = \frac{[1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)] \times 2^n \times n!}{n!n!} = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1) \times 2^n}{n!}$
The middle term is $T_{n+1} = \binom{2n}{n} x^n = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1) \times 2^n}{n!} x^n$
We can write this as $\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{n!} 2^n x^n$.
If the question indeed meant 2n instead of $2^n$, then the statement is incorrect. However, standard results show the factor is $2^n$. Given this is an example question, it is very likely a typo in the textbook/source of the question.
Assuming the question intended to have $2^n$ instead of $2n$, we have proved the statement.
The middle term in the expansion of $(1 + x)^{2n}$ is $\mathbf{\frac{1.3.5...(2n \;-\; 1)}{n!} 2^n x^n}$.
Note: There is likely a typo in the question, where 2n should be $2^n$. The derived formula matches the standard result with $2^n$. Assuming the standard result is what needs to be shown, the proof holds.
Example 7: Find the coefficient of x6y3 in the expansion of (x + 2y)9 .
Answer:
Given expansion:
$(x + 2y)^9$
This is in the form $(a+b)^n$, where $a = x$, $b = 2y$, and $n = 9$.
To Find:
The coefficient of the term $x^6y^3$ in the expansion.
Solution:
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=9$, $a=x$, and $b=2y$:
$T_{r+1} = \binom{9}{r} (x)^{9-r} (2y)^r$
$T_{r+1} = \binom{9}{r} x^{9-r} 2^r y^r$
$T_{r+1} = \binom{9}{r} 2^r x^{9-r} y^r$
We are looking for the term containing $x^6y^3$.
Comparing the exponents of $x$ and $y$ in the general term with those in $x^6y^3$:
For the exponent of $x$: $9-r = 6 \implies r = 9 - 6 = 3$.
For the exponent of $y$: $r = 3$.
Both conditions give $r = 3$. So, the term we are interested in is the $(3+1)^{\text{th}}$, which is the 4th term.
Substitute $r = 3$ into the general term formula to find the term:
$T_{3+1} = \binom{9}{3} 2^3 x^{9-3} y^3$
$T_4 = \binom{9}{3} 2^3 x^6 y^3$
Now, calculate the value of the coefficient, which is $\binom{9}{3} 2^3$.
$\binom{9}{3} = \frac{9!}{3!(9-3)!} = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7 \times 6!}{3 \times 2 \times 1 \times 6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = \frac{504}{6} = 84$
$2^3 = 2 \times 2 \times 2 = 8$
The coefficient of $x^6y^3$ is $\binom{9}{3} 2^3 = 84 \times 8$.
Calculation:
$84 \times 8 = 672$
The term containing $x^6y^3$ is $672 x^6y^3$.
The coefficient of $x^6y^3$ is $\mathbf{672}$.
Example 8: The second, third and fourth terms in the binomial expansion (x + a)n are 240, 720 and 1080, respectively. Find x, a and n.
Answer:
Given expansion:
$(x + a)^n$
The terms are in the form $(a+b)^n$, with $a$ replaced by $x$ and $b$ replaced by $a$. Let's use $u$ and $v$ for the terms in the binomial expansion to avoid confusion with the variable $a$ in the question. The expansion is $(u+v)^n$ where $u=x$ and $v=a$.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(u+v)^n$ is given by:
$T_{r+1} = \binom{n}{r} u^{n-r} v^r$
Substituting $u=x$ and $v=a$:
$T_{r+1} = \binom{n}{r} x^{n-r} a^r$
We are given the values of the second, third, and fourth terms:
Second term, $T_2$ (where $r+1=2$, so $r=1$):
$T_2 = \binom{n}{1} x^{n-1} a^1 = nx^{n-1}a = 240$
$nx^{n-1}a = 240$
... (i)
Third term, $T_3$ (where $r+1=3$, so $r=2$):
$T_3 = \binom{n}{2} x^{n-2} a^2 = \frac{n(n-1)}{2}x^{n-2}a^2 = 720$
$\frac{n(n-1)}{2}x^{n-2}a^2 = 720$
... (ii)
Fourth term, $T_4$ (where $r+1=4$, so $r=3$):
$T_4 = \binom{n}{3} x^{n-3} a^3 = \frac{n(n-1)(n-2)}{3 \times 2 \times 1}x^{n-3}a^3 = \frac{n(n-1)(n-2)}{6}x^{n-3}a^3 = 1080$
$\frac{n(n-1)(n-2)}{6}x^{n-3}a^3 = 1080$
... (iii)
To find $n$ and $\frac{a}{x}$, divide the third term by the second term:
$\frac{T_3}{T_2} = \frac{\frac{n(n-1)}{2}x^{n-2}a^2}{nx^{n-1}a} = \frac{720}{240}$
$\frac{n(n-1)}{2n} \frac{x^{n-2}}{x^{n-1}} \frac{a^2}{a} = 3$
$\frac{n-1}{2} x^{(n-2)-(n-1)} a^{2-1} = 3$
$\frac{n-1}{2} x^{-1} a^1 = 3$
$\frac{n-1}{2} \frac{a}{x} = 3$
$(n-1)\frac{a}{x} = 6$
... (iv)
Now, divide the fourth term by the third term:
$\frac{T_4}{T_3} = \frac{\frac{n(n-1)(n-2)}{6}x^{n-3}a^3}{\frac{n(n-1)}{2}x^{n-2}a^2} = \frac{1080}{720}$
$\frac{n(n-1)(n-2)}{6} \times \frac{2}{n(n-1)} \times \frac{x^{n-3}}{x^{n-2}} \times \frac{a^3}{a^2} = \frac{108}{72} = \frac{54}{36} = \frac{3}{2}$
$\frac{n-2}{3} x^{(n-3)-(n-2)} a^{3-2} = \frac{3}{2}$
$\frac{n-2}{3} x^{-1} a^1 = \frac{3}{2}$
$\frac{n-2}{3} \frac{a}{x} = \frac{3}{2}$
$(n-2)\frac{a}{x} = \frac{9}{2}$
... (v)
We now have a system of two equations with two unknowns, $n$ and $\frac{a}{x}$.
Divide equation (iv) by equation (v):
$\frac{(n-1)\frac{a}{x}}{(n-2)\frac{a}{x}} = \frac{6}{\frac{9}{2}}$
$\frac{n-1}{n-2} = 6 \times \frac{2}{9} = \frac{12}{9} = \frac{4}{3}$
Cross-multiply:
$3(n-1) = 4(n-2)$
$3n - 3 = 4n - 8$
$8 - 3 = 4n - 3n$
$5 = n$
$n = 5$
... (vi)
Now that we have $n=5$, substitute this value into equation (iv) to find $\frac{a}{x}$:
$(5-1)\frac{a}{x} = 6$
$4\frac{a}{x} = 6$
$\frac{a}{x} = \frac{6}{4} = \frac{3}{2}$
$\frac{a}{x} = \frac{3}{2}$
... (vii)
Finally, substitute $n=5$ into equation (i) to find the relationship between $x$ and $a$, and then use the value of $\frac{a}{x}$ to solve for $x$ and $a$ individually.
Equation (i): $nx^{n-1}a = 240$
$5x^{5-1}a = 240$
$5x^4a = 240$
$x^4a = \frac{240}{5} = 48$
$x^4a = 48$
... (viii)
From equation (vii), $a = \frac{3}{2}x$. Substitute this into equation (viii):
$x^4 \left(\frac{3}{2}x\right) = 48$
$\frac{3}{2} x^{4+1} = 48$
$\frac{3}{2} x^5 = 48$
$x^5 = 48 \times \frac{2}{3} = \frac{96}{3} = 32$
$x^5 = 32$
Since $2^5 = 32$, we have $x = 2$.
$x = 2$
... (ix)
Now that we have $x=2$, substitute it back into equation (vii) to find $a$:
$\frac{a}{x} = \frac{3}{2}$
$\frac{a}{2} = \frac{3}{2}$
$a = \frac{3}{2} \times 2 = 3$
$a = 3$
... (x)
We have found the values of $x$, $a$, and $n$. Let's verify these values using equations (i), (ii), and (iii).
Check with (i): $nx^{n-1}a = 5 \times 2^{5-1} \times 3 = 5 \times 2^4 \times 3 = 5 \times 16 \times 3 = 80 \times 3 = 240$. Correct.
Check with (ii): $\frac{n(n-1)}{2}x^{n-2}a^2 = \frac{5(5-1)}{2} \times 2^{5-2} \times 3^2 = \frac{5 \times 4}{2} \times 2^3 \times 9 = 10 \times 8 \times 9 = 80 \times 9 = 720$. Correct.
Check with (iii): $\frac{n(n-1)(n-2)}{6}x^{n-3}a^3 = \frac{5(5-1)(5-2)}{6} \times 2^{5-3} \times 3^3 = \frac{5 \times 4 \times 3}{6} \times 2^2 \times 27 = \frac{60}{6} \times 4 \times 27 = 10 \times 4 \times 27 = 40 \times 27 = 1080$. Correct.
The values are consistent.
The values are $\mathbf{x=2}$, $\mathbf{a=3}$, and $\mathbf{n=5}$.
Example 9: The coefficients of three consecutive terms in the expansion of (1 + a)n are in the ratio 1: 7 : 42. Find n.
Answer:
Given expansion:
$(1 + a)^n$
The general term in the expansion of $(1 + x)^n$ is $T_{r+1} = \binom{n}{r} x^r$. In this case, the expansion is $(1+a)^n$, so the general term is $T_{r+1} = \binom{n}{r} a^r$.
The coefficient of the $(r+1)^{\text{th}}$ term is $\binom{n}{r}$.
Let the three consecutive terms be the $r^{\text{th}}$, $(r+1)^{\text{th}}$, and $(r+2)^{\text{th}}$ terms.
The coefficients of these terms are $\binom{n}{r-1}$, $\binom{n}{r}$, and $\binom{n}{r+1}$ respectively (assuming $r \geq 1$ for the $r^{\text{th}}$ term to exist, and $r+1 \leq n$ for the $(r+2)^{\text{th}}$ term to exist in a non-trivial way). Let's assume the terms start from $T_1$. So the terms are $T_k, T_{k+1}, T_{k+2}$. The coefficients are $\binom{n}{k-1}, \binom{n}{k}, \binom{n}{k+1}$. Let's use $r-1, r, r+1$ for the indices as this is standard.
The coefficients of the three consecutive terms are $\binom{n}{r-1}$, $\binom{n}{r}$, and $\binom{n}{r+1}$.
We are given that the ratio of these coefficients is $1 : 7 : 42$.
So, $\binom{n}{r-1} : \binom{n}{r} : \binom{n}{r+1} = 1 : 7 : 42$.
From the ratio, we have two equations:
1. $\frac{\binom{n}{r-1}}{\binom{n}{r}} = \frac{1}{7}$
2. $\frac{\binom{n}{r}}{\binom{n}{r+1}} = \frac{7}{42} = \frac{1}{6}$
We use the property of binomial coefficients: $\frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n-k+1}{k}$.
Using this property for the first equation:
$\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-(r-1)+1}{r-1+1} = \frac{n-r+1+1}{r} = \frac{n-r+2}{r}$
So, $\frac{n-r+2}{r} = 7$ (from $\frac{\binom{n}{r-1}}{\binom{n}{r}} = \frac{1}{7}$) - Error in applying formula. Let's use the basic definition or the inverse property.
The property is $\frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n-k+1}{k}$.
So, $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-r+1}{r}$.
From the first equation $\frac{\binom{n}{r-1}}{\binom{n}{r}} = \frac{1}{7}$, we have $\frac{\binom{n}{r}}{\binom{n}{r-1}} = 7$.
Therefore, $\frac{n-r+1}{r} = 7$
$n - r + 1 = 7r$
$n + 1 = 8r$
... (i)
Using the property for the second equation:
$\frac{\binom{n}{r+1}}{\binom{n}{r}} = \frac{n-(r+1)+1}{r+1} = \frac{n-r-1+1}{r+1} = \frac{n-r}{r+1}$
From the second equation $\frac{\binom{n}{r}}{\binom{n}{r+1}} = \frac{1}{6}$, we have $\frac{\binom{n}{r+1}}{\binom{n}{r}} = 6$.
Therefore, $\frac{n-r}{r+1} = 6$
$n - r = 6(r+1)$
$n - r = 6r + 6$
$n - 6 = 7r$
... (ii)
We have a system of two linear equations with two unknowns, $n$ and $r$:
Equation (i): $n + 1 = 8r$
Equation (ii): $n - 6 = 7r$
Subtract equation (ii) from equation (i):
$(n + 1) - (n - 6) = 8r - 7r$
$n + 1 - n + 6 = r$
$7 = r$
$r = 7$
... (iii)
Now substitute the value of $r=7$ into either equation (i) or (ii) to find $n$. Using equation (i):
$n + 1 = 8r$
$n + 1 = 8(7)$
$n + 1 = 56$
$n = 56 - 1$
$n = 55$
$n = 55$
... (iv)
We should check if the indices $r-1$, $r$, and $r+1$ are valid for $n=55$ and $r=7$. The indices are $7-1=6$, $7$, and $7+1=8$. These are valid indices for an expansion with power 55 (terms from index 0 to 55). The coefficients are $\binom{55}{6}$, $\binom{55}{7}$, and $\binom{55}{8}$.
Let's verify the ratios using $n=55$ and $r=7$ with the property $\frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n-k+1}{k}$.
Ratio 1: $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{\binom{55}{7}}{\binom{55}{6}} = \frac{55-7+1}{7} = \frac{49}{7} = 7$. This matches $\frac{7}{1}$.
Ratio 2: $\frac{\binom{n}{r+1}}{\binom{n}{r}} = \frac{\binom{55}{8}}{\binom{55}{7}} = \frac{55-8+1}{8} = \frac{48}{8} = 6$. This matches $\frac{42}{7}$.
The values are consistent.
The value of $n$ is 55.
Exercise 8.2
Find the coefficient of
Question 1. x5 in (x + 3)8
Answer:
Given expansion:
$(x + 3)^8$
This is in the form $(a+b)^n$, where $a = x$, $b = 3$, and $n = 8$.
To Find:
The coefficient of the term $x^5$ in the expansion.
Solution:
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=8$, $a=x$, and $b=3$:
$T_{r+1} = \binom{8}{r} (x)^{8-r} (3)^r$
$T_{r+1} = \binom{8}{r} 3^r x^{8-r}$
We are looking for the term containing $x^5$.
Comparing the exponent of $x$ in the general term with the exponent of $x$ in $x^5$:
$8-r = 5$
$r = 8 - 5 = 3$
So, the term we are interested in is the $(3+1)^{\text{th}}$, which is the 4th term.
Substitute $r = 3$ into the general term formula to find the term:
$T_{3+1} = \binom{8}{3} 3^3 x^{8-3}$
$T_4 = \binom{8}{3} 3^3 x^5$
Now, calculate the value of the coefficient, which is $\binom{8}{3} 3^3$.
$\binom{8}{3} = \frac{8!}{3!(8-3)!} = \frac{8!}{3!5!} = \frac{8 \times 7 \times 6 \times 5!}{3 \times 2 \times 1 \times 5!} = \frac{8 \times 7 \times 6}{6} = 8 \times 7 = 56$
$3^3 = 3 \times 3 \times 3 = 27$
The coefficient of $x^5$ is $\binom{8}{3} 3^3 = 56 \times 27$.
Calculation:
$56 \times 27 = 1512$
The term containing $x^5$ is $1512 x^5$.
The coefficient of $x^5$ is $\mathbf{1512}$.
Question 2. a5b7 in (a – 2b)12 .
Answer:
Given expansion:
$(a - 2b)^{12}$
This is in the form $(x+y)^n$, where $x = a$, $y = -2b$, and $n = 12$.
To Find:
The coefficient of the term $a^5b^7$ in the expansion.
Solution:
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(x+y)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} x^{n-r} y^r$
Substitute the values $n=12$, $x=a$, and $y=-2b$:
$T_{r+1} = \binom{12}{r} (a)^{12-r} (-2b)^r$
$T_{r+1} = \binom{12}{r} a^{12-r} (-2)^r b^r$
$T_{r+1} = \binom{12}{r} (-2)^r a^{12-r} b^r$
We are looking for the term containing $a^5b^7$.
Comparing the exponents of $a$ and $b$ in the general term with those in $a^5b^7$:
For the exponent of $a$: $12-r = 5 \implies r = 12 - 5 = 7$.
For the exponent of $b$: $r = 7$.
Both conditions give $r = 7$. So, the term we are interested in is the $(7+1)^{\text{th}}$, which is the 8th term.
Substitute $r = 7$ into the general term formula to find the term:
$T_{7+1} = \binom{12}{7} (-2)^7 a^{12-7} b^7$
$T_8 = \binom{12}{7} (-2)^7 a^5 b^7$
Now, calculate the value of the coefficient, which is $\binom{12}{7} (-2)^7$.
$\binom{12}{7} = \frac{12!}{7!(12-7)!} = \frac{12!}{7!5!} = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7!}{5 \times 4 \times 3 \times 2 \times 1 \times 7!} = \frac{12 \times 11 \times 10 \times 9 \times 8}{120}$
$\binom{12}{7} = \frac{95040}{120} = 792$
$(-2)^7 = (-1)^7 \times 2^7 = -1 \times 128 = -128$
The coefficient of $a^5b^7$ is $\binom{12}{7} (-2)^7 = 792 \times (-128)$.
Calculation:
$792 \times (-128)$
$\begin{array}{ccccccc}& & & 7 & 9 & 2 \\ \times & & & 1 & 2 & 8 \\ \hline && 6 & 3 & 3 & 6 \\ & 1 & 5 & 8 & 4 & \times \\ 7 & 9 & 2 & \times & \times \\ \hline 1 & 0 & 1 & 3 & 7 & 6 \\ \hline \end{array}$
So, $792 \times 128 = 101376$.
Since we are multiplying by -128, the result is negative.
$792 \times (-128) = -101376$.
The term containing $a^5b^7$ is $-101376 a^5b^7$.
The coefficient of $a^5b^7$ is $\mathbf{-101376}$.
Write the general term in the expansion of
Question 3. (x2 – y)6
Answer:
Given expansion:
$(x^2 - y)^6$
To Find:
The general term of the expansion.
Solution:
The general term in the expansion of $(a+b)^n$ is the $(r+1)^{\text{th}}$ term, given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
In the given expansion $(x^2 - y)^6$, we have:
$a = x^2$
$b = -y$
$n = 6$
Substitute these values into the general term formula:
$T_{r+1} = \binom{6}{r} (x^2)^{6-r} (-y)^r$
$T_{r+1} = \binom{6}{r} x^{2(6-r)} (-1)^r y^r$
$T_{r+1} = \binom{6}{r} (-1)^r x^{12-2r} y^r$
The general term in the expansion of $(x^2 - y)^6$ is $\mathbf{T_{r+1} = \binom{6}{r} (-1)^r x^{12-2r} y^r}$, where $r$ is an integer from 0 to 6 (i.e., $r = 0, 1, 2, 3, 4, 5, 6$).
Question 4. (x2 – yx)12 , x ≠ 0.
Answer:
Given expansion:
$(x^2 - yx)^{12}$
To Find:
The general term of the expansion.
Solution:
The general term in the expansion of $(a+b)^n$ is the $(r+1)^{\text{th}}$ term, given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
In the given expansion $(x^2 - yx)^{12}$, we have:
$a = x^2$
$b = -yx$
$n = 12$
Substitute these values into the general term formula:
$T_{r+1} = \binom{12}{r} (x^2)^{12-r} (-yx)^r$
$T_{r+1} = \binom{12}{r} x^{2(12-r)} (-1)^r y^r x^r$
$T_{r+1} = \binom{12}{r} (-1)^r x^{24-2r} y^r x^r$
Combine the terms with $x$ by adding their exponents:
$T_{r+1} = \binom{12}{r} (-1)^r x^{24-2r+r} y^r$
$T_{r+1} = \binom{12}{r} (-1)^r x^{24-r} y^r$
The general term in the expansion of $(x^2 - yx)^{12}$ is $\mathbf{T_{r+1} = \binom{12}{r} (-1)^r x^{24-r} y^r}$, where $r$ is an integer from 0 to 12 (i.e., $r = 0, 1, 2, ..., 12$).
Question 5. Find the 4th term in the expansion of (x – 2y)12 .
Answer:
Given expansion:
$(x - 2y)^{12}$
To Find:
The 4th term in the expansion.
Solution:
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
In the given expansion $(x - 2y)^{12}$, we have:
$a = x$
$b = -2y$
$n = 12$
We want to find the 4th term, which means $r+1 = 4$.
So, $r = 4 - 1 = 3$.
Substitute $r=3$, $n=12$, $a=x$, and $b=-2y$ into the general term formula:
$T_{3+1} = \binom{12}{3} (x)^{12-3} (-2y)^3$
$T_4 = \binom{12}{3} x^9 (-2)^3 y^3$
Now, calculate the values of the binomial coefficient and the power of -2:
$\binom{12}{3} = \frac{12!}{3!(12-3)!} = \frac{12!}{3!9!} = \frac{12 \times 11 \times 10 \times 9!}{3 \times 2 \times 1 \times 9!} = \frac{12 \times 11 \times 10}{6} = 2 \times 11 \times 10 = 220$
$(-2)^3 = (-1)^3 \times 2^3 = -1 \times 8 = -8$
Substitute these values back into the expression for $T_4$:
$T_4 = 220 \times x^9 \times (-8) \times y^3$
$T_4 = 220 \times (-8) \times x^9 y^3$
$T_4 = -1760 x^9 y^3$
The 4th term in the expansion of $(x - 2y)^{12}$ is $\mathbf{-1760 x^9 y^3}$.
Question 6. Find the 13th term in the expansion of $\left( 9x-\frac{1}{3\sqrt{x}} \right)^{18}\;,\; x\neq0$ .
Answer:
Given expansion:
$\left( 9x-\frac{1}{3\sqrt{x}} \right)^{18}$
To Find:
The 13th term in the expansion.
Solution:
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
In the given expansion $\left( 9x-\frac{1}{3\sqrt{x}} \right)^{18}$, we have:
$a = 9x$
$b = -\frac{1}{3\sqrt{x}}$
$n = 18$
We want to find the 13th term, which means $r+1 = 13$.
So, $r = 13 - 1 = 12$.
Substitute $r=12$, $n=18$, $a=9x$, and $b=-\frac{1}{3\sqrt{x}}$ into the general term formula:
$T_{12+1} = \binom{18}{12} (9x)^{18-12} \left(-\frac{1}{3\sqrt{x}}\right)^{12}$
$T_{13} = \binom{18}{12} (9x)^6 \left(-\frac{1}{3x^{1/2}}\right)^{12}$
$T_{13} = \binom{18}{12} 9^6 x^6 \left(\frac{(-1)^{12}}{3^{12} (x^{1/2})^{12}}\right)$
$T_{13} = \binom{18}{12} 9^6 x^6 \left(\frac{1}{3^{12} x^{12/2}}\right)$
$T_{13} = \binom{18}{12} 9^6 x^6 \left(\frac{1}{3^{12} x^6}\right)$
Simplify the powers of 9 and 3. Since $9 = 3^2$, $9^6 = (3^2)^6 = 3^{12}$.
$T_{13} = \binom{18}{12} 3^{12} x^6 \left(\frac{1}{3^{12} x^6}\right)$
$T_{13} = \binom{18}{12} \frac{3^{12}}{3^{12}} \frac{x^6}{x^6}$
$T_{13} = \binom{18}{12} \times 1 \times 1$
$T_{13} = \binom{18}{12}$
Now, calculate the value of the binomial coefficient $\binom{18}{12}$.
We know that $\binom{n}{k} = \binom{n}{n-k}$. So, $\binom{18}{12} = \binom{18}{18-12} = \binom{18}{6}$.
$\binom{18}{6} = \frac{18!}{6!(18-6)!} = \frac{18!}{6!12!} = \frac{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!}{6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 12!}$
$\binom{18}{6} = \frac{18 \times 17 \times 16 \times 15 \times 14 \times 13}{6 \times 5 \times 4 \times 3 \times 2 \times 1}$
The denominator is $6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$.
Numerator: $18 \times 17 \times 16 \times 15 \times 14 \times 13 = 13366080$.
$\binom{18}{6} = \frac{13366080}{720} = 18564$
The 13th term is a constant term (independent of $x$) and its value is 18564.
The 13th term in the expansion of $\left( 9x-\frac{1}{3\sqrt{x}} \right)^{18}$ is $\mathbf{18564}$.
Find the middle terms in the expansions of
Question 7. $\left( 3 - \frac{x^3}{6} \right)^7$
Answer:
Given expansion:
$\left( 3 - \frac{x^3}{6} \right)^7$
To Find:
The middle terms in the expansion.
Solution:
The expansion is of the form $(a+b)^n$, where $a = 3$, $b = -\frac{x^3}{6}$, and $n = 7$.
The total number of terms in the expansion is $n+1 = 7+1 = 8$.
Since the number of terms (8) is even, there are two middle terms.
The positions of the middle terms are $\left(\frac{n}{2}+1\right)^{\text{th}}$ term and $\left(\frac{n}{2}+2\right)^{\text{th}}$ term.
Here $n=7$, which is odd. The positions are $\left(\frac{n+1}{2}\right)^{\text{th}}$ term and $\left(\frac{n+1}{2}+1\right)^{\text{th}}$ term.
Middle term positions = $\left(\frac{7+1}{2}\right)^{\text{th}}$ term and $\left(\frac{7+1}{2}+1\right)^{\text{th}}$ term.
Middle term positions = $(4)^{\text{th}}$ term and $(4+1)^{\text{th}}$ term = 4th term and 5th term.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=7$, $a=3$, and $b=-\frac{x^3}{6}$:
$T_{r+1} = \binom{7}{r} (3)^{7-r} \left(-\frac{x^3}{6}\right)^r$
$T_{r+1} = \binom{7}{r} 3^{7-r} (-1)^r \frac{(x^3)^r}{6^r}$
$T_{r+1} = \binom{7}{r} (-1)^r 3^{7-r} \frac{x^{3r}}{6^r}$
Since $6 = 2 \times 3$, $6^r = 2^r \times 3^r$.
$T_{r+1} = \binom{7}{r} (-1)^r 3^{7-r} \frac{x^{3r}}{2^r 3^r}$
$T_{r+1} = \binom{7}{r} (-1)^r \frac{3^{7-r}}{3^r} \frac{x^{3r}}{2^r}$
$T_{r+1} = \binom{7}{r} (-1)^r 3^{7-r-r} \frac{x^{3r}}{2^r}$
$T_{r+1} = \binom{7}{r} (-1)^r \frac{3^{7-2r}}{2^r} x^{3r}$
First middle term is the 4th term ($r=3$):
$T_4 = T_{3+1} = \binom{7}{3} (-1)^3 \frac{3^{7-2(3)}}{2^3} x^{3(3)}$
$T_4 = \binom{7}{3} (-1) \frac{3^{7-6}}{8} x^9$
$T_4 = \binom{7}{3} (-1) \frac{3^1}{8} x^9$
Calculate $\binom{7}{3}$: $\binom{7}{3} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$.
$T_4 = 35 \times (-1) \times \frac{3}{8} \times x^9$
$T_4 = -35 \times \frac{3}{8} x^9 = -\frac{105}{8} x^9$
Second middle term is the 5th term ($r=4$):
$T_5 = T_{4+1} = \binom{7}{4} (-1)^4 \frac{3^{7-2(4)}}{2^4} x^{3(4)}$
$T_5 = \binom{7}{4} (1) \frac{3^{7-8}}{16} x^{12}$
$T_5 = \binom{7}{4} \frac{3^{-1}}{16} x^{12}$
Calculate $\binom{7}{4}$: $\binom{7}{4} = \binom{7}{7-4} = \binom{7}{3} = 35$.
$T_5 = 35 \times \frac{1}{3 \times 16} x^{12}$
$T_5 = 35 \times \frac{1}{48} x^{12} = \frac{35}{48} x^{12}$
The middle terms are the 4th and 5th terms.
The 4th term is $\mathbf{-\frac{105}{8} x^9}$.
The 5th term is $\mathbf{\frac{35}{48} x^{12}}$.
Question 8. $\left( \frac{x}{3}+9y \right)^{10}$
Answer:
Given expansion:
$\left( \frac{x}{3}+9y \right)^{10}$
To Find:
The middle term in the expansion.
Solution:
The expansion is of the form $(a+b)^n$, where $a = \frac{x}{3}$, $b = 9y$, and $n = 10$.
The total number of terms in the expansion is $n+1 = 10+1 = 11$.
Since the number of terms (11) is odd, there is exactly one middle term.
The position of the middle term is $\left(\frac{n}{2}+1\right)^{\text{th}}$ term. No, this is for even $n+1$.
The position of the middle term is $\left(\frac{\text{Total number of terms} + 1}{2}\right)^{\text{th}}$ term.
Middle term position = $\left(\frac{11+1}{2}\right)^{\text{th}}$ term = $\left(\frac{12}{2}\right)^{\text{th}}$ term = 6th term.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=10$, $a=\frac{x}{3}$, and $b=9y$:
$T_{r+1} = \binom{10}{r} \left(\frac{x}{3}\right)^{10-r} (9y)^r$
$T_{r+1} = \binom{10}{r} \frac{x^{10-r}}{3^{10-r}} 9^r y^r$
Since $9 = 3^2$, $9^r = (3^2)^r = 3^{2r}$.
$T_{r+1} = \binom{10}{r} \frac{x^{10-r}}{3^{10-r}} 3^{2r} y^r$
$T_{r+1} = \binom{10}{r} 3^{2r - (10-r)} x^{10-r} y^r$
$T_{r+1} = \binom{10}{r} 3^{2r - 10 + r} x^{10-r} y^r$
$T_{r+1} = \binom{10}{r} 3^{3r - 10} x^{10-r} y^r$
The middle term is the 6th term, which means $r+1 = 6$.
So, $r = 6 - 1 = 5$.
Substitute $r=5$ into the general term formula:
$T_6 = T_{5+1} = \binom{10}{5} 3^{3(5) - 10} x^{10-5} y^5$
$T_6 = \binom{10}{5} 3^{15 - 10} x^5 y^5$
$T_6 = \binom{10}{5} 3^5 x^5 y^5$
Now, calculate the values of the binomial coefficient and the power of 3:
$\binom{10}{5} = \frac{10!}{5!(10-5)!} = \frac{10!}{5!5!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!} = \frac{10 \times 9 \times 8 \times 7 \times 6}{120}$
$\binom{10}{5} = \frac{30240}{120} = 252$
$3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 9 \times 9 \times 3 = 81 \times 3 = 243$
Substitute these values back into the expression for $T_6$:
$T_6 = 252 \times 243 \times x^5 y^5$
Calculate $252 \times 243$:
$\begin{array}{cccccc}& & & 2 & 5 & 2 \\ \times & & & 2 & 4 & 3 \\ \hline && 7 & 5 & 6 \\ & 1 & 0 & 0 & 8 & \times \\ 5 & 0 & 4 & \times & \times \\ \hline 6 & 1 & 2 & 4 & 3 & 6 \\ \hline \end{array}$
$252 \times 243 = 61236$.
The middle term is $61236 x^5 y^5$.
The middle term in the expansion of $\left( \frac{x}{3}+9y \right)^{10}$ is $\mathbf{61236 x^5 y^5}$.
Question 9. In the expansion of (1 + a)m+n , prove that coefficients of am and an are equal.
Answer:
Given expansion:
$(1 + a)^{m+n}$
This is in the form $(x+y)^N$, where $x=1$, $y=a$, and $N = m+n$.
To Prove:
The coefficient of $a^m$ is equal to the coefficient of $a^n$ in the expansion of $(1+a)^{m+n}$.
Proof:
The general term in the expansion of $(1+y)^N$ is $T_{r+1} = \binom{N}{r} (1)^{N-r} y^r = \binom{N}{r} y^r$.
In our case, $y=a$ and $N=m+n$. So, the general term is:
$T_{r+1} = \binom{m+n}{r} a^r$
We want to find the coefficient of $a^m$. This occurs when the exponent of $a$ in the general term is $m$.
$r = m$
The coefficient of $a^m$ is obtained by setting $r=m$ in the general term's coefficient $\binom{m+n}{r}$.
Coefficient of $a^m = \binom{m+n}{m}$.
We want to find the coefficient of $a^n$. This occurs when the exponent of $a$ in the general term is $n$.
$r = n$
The coefficient of $a^n$ is obtained by setting $r=n$ in the general term's coefficient $\binom{m+n}{r}$.
Coefficient of $a^n = \binom{m+n}{n}$.
We need to show that $\binom{m+n}{m} = \binom{m+n}{n}$.
Recall the property of binomial coefficients: $\binom{N}{k} = \binom{N}{N-k}$.
In our case, $N = m+n$ and we want to show $\binom{m+n}{m} = \binom{m+n}{n}$.
Let $k = m$. Then $N-k = (m+n) - m = n$.
Using the property, $\binom{m+n}{m} = \binom{m+n}{(m+n)-m} = \binom{m+n}{n}$.
Therefore, the coefficient of $a^m$, which is $\binom{m+n}{m}$, is equal to the coefficient of $a^n$, which is $\binom{m+n}{n}$.
Thus, the coefficients of $a^m$ and $a^n$ in the expansion of $(1+a)^{m+n}$ are equal.
Hence Proved.
Question 10. The coefficients of the (r – 1)th , rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1 : 3 : 5. Find n and r.
Answer:
Given expansion:
$(x + 1)^n$
The general term in the expansion of $(a+b)^n$ is $T_{k+1} = \binom{n}{k} a^{n-k} b^k$.
In this case, $a=x$, $b=1$. The general term is $T_{k+1} = \binom{n}{k} x^{n-k} 1^k = \binom{n}{k} x^{n-k}$.
The coefficient of the $(k+1)^{\text{th}}$ term is $\binom{n}{k}$.
We are given the coefficients of the $(r-1)^{\text{th}}$, $r^{\text{th}}$, and $(r+1)^{\text{th}}$ terms.
The $(r-1)^{\text{th}}$ term is $T_{r-1}$. Its coefficient is $\binom{n}{(r-1)-1} = \binom{n}{r-2}$. (Assuming $r-1 \geq 1$, so $r \geq 2$)
The $r^{\text{th}}$ term is $T_r$. Its coefficient is $\binom{n}{r-1}$. (Assuming $r \geq 1$)
The $(r+1)^{\text{th}}$ term is $T_{r+1}$. Its coefficient is $\binom{n}{r}$. (Assuming $r \geq 0$)
For all three terms to exist with non-zero coefficients, we need $r-2 \geq 0$, so $r \geq 2$, and $r \leq n$, and $r+1 \leq n+1$. Thus, $2 \leq r \leq n$.
The coefficients are $\binom{n}{r-2}$, $\binom{n}{r-1}$, and $\binom{n}{r}$.
We are given that these coefficients are in the ratio $1 : 3 : 5$.
So, $\binom{n}{r-2} : \binom{n}{r-1} : \binom{n}{r} = 1 : 3 : 5$.
From the ratio, we have two equations:
1. $\frac{\binom{n}{r-2}}{\binom{n}{r-1}} = \frac{1}{3}$
2. $\frac{\binom{n}{r-1}}{\binom{n}{r}} = \frac{3}{5}$
We use the property of binomial coefficients: $\frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n-k+1}{k}$.
Using this property for the first equation (with $k=r-1$):
$\frac{\binom{n}{r-1}}{\binom{n}{r-2}} = \frac{n-(r-1)+1}{r-1} = \frac{n-r+1+1}{r-1} = \frac{n-r+2}{r-1}$
From $\frac{\binom{n}{r-2}}{\binom{n}{r-1}} = \frac{1}{3}$, we have $\frac{\binom{n}{r-1}}{\binom{n}{r-2}} = 3$.
Therefore, $\frac{n-r+2}{r-1} = 3$
$n - r + 2 = 3(r-1)$
$n - r + 2 = 3r - 3$
$n + 2 + 3 = 3r + r$
$n + 5 = 4r$
... (i)
Using the property for the second equation (with $k=r$):
$\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-r+1}{r}$
From $\frac{\binom{n}{r-1}}{\binom{n}{r}} = \frac{3}{5}$, we have $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{5}{3}$.
Therefore, $\frac{n-r+1}{r} = \frac{5}{3}$
$3(n - r + 1) = 5r$
$3n - 3r + 3 = 5r$
$3n + 3 = 5r + 3r$
$3n + 3 = 8r$
... (ii)
We now have a system of two linear equations with two unknowns, $n$ and $r$:
Equation (i): $n + 5 = 4r$
Equation (ii): $3n + 3 = 8r$
Multiply equation (i) by 2 to make the coefficient of $r$ the same as in equation (ii):
$2(n + 5) = 2(4r)$
$2n + 10 = 8r$
$2n + 10 = 8r$
... (iii)
Now equate the expressions for $8r$ from equation (ii) and equation (iii):
$3n + 3 = 2n + 10$
$3n - 2n = 10 - 3$
$n = 7$
... (iv)
Now substitute the value of $n=7$ into equation (i) to find $r$:
$n + 5 = 4r$
$7 + 5 = 4r$
$12 = 4r$
$r = \frac{12}{4} = 3$
$r = 3$
... (v)
We need to check if the value of $r=3$ satisfies the condition $r \geq 2$. Yes, $3 \geq 2$. We also need to check if $r \leq n$. Yes, $3 \leq 7$. The coefficients are $\binom{7}{3-2}=\binom{7}{1}$, $\binom{7}{3-1}=\binom{7}{2}$, and $\binom{7}{3}=\binom{7}{3}$.
Let's calculate these coefficients and check their ratio:
$\binom{7}{1} = 7$
$\binom{7}{2} = \frac{7 \times 6}{2 \times 1} = 21$
$\binom{7}{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$
The ratio of the coefficients $\binom{7}{1} : \binom{7}{2} : \binom{7}{3}$ is $7 : 21 : 35$.
Divide by the greatest common divisor, which is 7:
$7/7 : 21/7 : 35/7 = 1 : 3 : 5$.
This matches the given ratio.
The values are consistent.
The values are $\mathbf{n=7}$ and $\mathbf{r=3}$.
Question 11. Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n – 1 .
Answer:
To Prove:
The coefficient of $x^n$ in the expansion of $(1 + x)^{2n}$ is twice the coefficient of $x^n$ in the expansion of $(1 + x)^{2n – 1}$.
Mathematically, we need to show that $\text{Coefficient}(x^n \text{ in } (1+x)^{2n}) = 2 \times \text{Coefficient}(x^n \text{ in } (1+x)^{2n-1})$.
Proof:
The general term in the binomial expansion of $(1+x)^N$ is given by $T_{k+1} = \binom{N}{k} 1^{N-k} x^k = \binom{N}{k} x^k$. The coefficient of $x^k$ is $\binom{N}{k}$.
Consider the expansion of $(1+x)^{2n}$. Here, the power of the expansion is $N = 2n$.
We are looking for the coefficient of $x^n$, which means the exponent of $x$ is $k=n$.
The coefficient of $x^n$ in $(1+x)^{2n}$ is $\binom{2n}{n}$.
Consider the expansion of $(1+x)^{2n-1}$. Here, the power of the expansion is $N = 2n-1$.
We are looking for the coefficient of $x^n$, which means the exponent of $x$ is $k=n$.
The coefficient of $x^n$ in $(1+x)^{2n-1}$ is $\binom{2n-1}{n}$.
We need to prove that $\binom{2n}{n} = 2 \times \binom{2n-1}{n}$.
Let's start with the left side of the equation and use the definition of the binomial coefficient $\binom{N}{k} = \frac{N!}{k!(N-k)!}$:
Left Hand Side (LHS) = $\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!}$
Now consider the right side of the equation:
Right Hand Side (RHS) = $2 \times \binom{2n-1}{n}$
Using the definition of the binomial coefficient for $\binom{2n-1}{n}$:
$\binom{2n-1}{n} = \frac{(2n-1)!}{n!((2n-1)-n)!} = \frac{(2n-1)!}{n!(n-1)!}$
So, RHS = $2 \times \frac{(2n-1)!}{n!(n-1)!}$
We want to show that LHS = RHS, i.e., $\frac{(2n)!}{n!n!} = 2 \times \frac{(2n-1)!}{n!(n-1)!}$.
Let's manipulate the expression for LHS:
LHS = $\frac{(2n)!}{n!n!}$
We know that $(2n)! = (2n) \times (2n-1)!$.
LHS = $\frac{2n \times (2n-1)!}{n!n!}$
We also know that $n! = n \times (n-1)!$. Let's substitute this for one of the $n!$ terms in the denominator:
LHS = $\frac{2n \times (2n-1)!}{n! \times (n \times (n-1)!)}$
Rearrange the terms in the denominator and numerator:
LHS = $\frac{2n}{n} \times \frac{(2n-1)!}{n! \times (n-1)!}$
Simplify $\frac{2n}{n} = 2$ (assuming $n$ is a positive integer, so $n \neq 0$):
LHS = $2 \times \frac{(2n-1)!}{n!(n-1)!}$
We recognize the term $\frac{(2n-1)!}{n!(n-1)!}$ as $\binom{2n-1}{n}$.
LHS = $2 \times \binom{2n-1}{n}$
Thus, we have shown that LHS = $2 \times \binom{2n-1}{n}$, which is equal to the RHS.
$\binom{2n}{n} = 2 \times \binom{2n-1}{n}$
This proves that the coefficient of $x^n$ in the expansion of $(1+x)^{2n}$ is twice the coefficient of $x^n$ in the expansion of $(1+x)^{2n-1}$.
Hence Proved.
Question 12. Find a positive value of m for which the coefficient of x2 in the expansion (1 + x)m is 6.
Answer:
Given expansion:
$(1 + x)^m$
To Find:
A positive value of $m$ such that the coefficient of $x^2$ in the expansion is 6.
Solution:
The general term in the binomial expansion of $(1+x)^m$ is given by $T_{r+1} = \binom{m}{r} 1^{m-r} x^r = \binom{m}{r} x^r$.
The coefficient of $x^r$ is $\binom{m}{r}$.
We are looking for the coefficient of $x^2$. This means $r=2$.
The coefficient of $x^2$ in the expansion of $(1+x)^m$ is $\binom{m}{2}$.
We are given that this coefficient is equal to 6.
So, we have the equation:
$\binom{m}{2} = 6$
Using the definition of the binomial coefficient $\binom{m}{k} = \frac{m(m-1)...(m-k+1)}{k!}$ for a real number $m$ and non-negative integer $k$. For integer $m$, $\binom{m}{k} = \frac{m!}{k!(m-k)!}$.
For $\binom{m}{2}$, where $m$ is a positive value (and likely an integer for the binomial coefficient to be easily defined and non-zero for $k=2$), we have:
$\binom{m}{2} = \frac{m(m-1)}{2!}$
$\binom{m}{2} = \frac{m(m-1)}{2 \times 1} = \frac{m(m-1)}{2}$
Substitute this into the equation $\binom{m}{2} = 6$:
$\frac{m(m-1)}{2} = 6$
$m(m-1) = 6 \times 2$
$m(m-1) = 12$
Expand the left side and form a quadratic equation:
$m^2 - m = 12$
$m^2 - m - 12 = 0$
We can solve this quadratic equation by factoring or using the quadratic formula. Let's try factoring.
We need two numbers that multiply to -12 and add to -1. These numbers are -4 and 3.
$(m - 4)(m + 3) = 0$
Setting each factor to zero gives the possible values for $m$:
$m - 4 = 0 \implies m = 4$
$m + 3 = 0 \implies m = -3$
The question asks for a positive value of $m$.
From the two solutions, $m=4$ is positive, and $m=-3$ is negative.
Therefore, the positive value of $m$ is 4.
Let's verify for $m=4$. The expansion is $(1+x)^4$.
The coefficient of $x^2$ in $(1+x)^4$ is $\binom{4}{2}$.
$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = \frac{4 \times 3 \times 2!}{2 \times 1 \times 2!} = \frac{4 \times 3}{2} = 6$.
This matches the given condition.
The positive value of m is $\mathbf{4}$.
Example 10 to 17 - Miscellaneous Examples
Example 10: Find the term independent of x in the expansion of $\left( \frac{3}{2}x^2 - \frac{1}{3x} \right)^6$ .
Answer:
Given expansion:
$\left( \frac{3}{2}x^2 - \frac{1}{3x} \right)^6$
To Find:
The term independent of $x$ in the expansion.
Solution:
The expansion is of the form $(a+b)^n$, where $a = \frac{3}{2}x^2$, $b = -\frac{1}{3x}$, and $n = 6$.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=6$, $a=\frac{3}{2}x^2$, and $b=-\frac{1}{3x}$:
$T_{r+1} = \binom{6}{r} \left(\frac{3}{2}x^2\right)^{6-r} \left(-\frac{1}{3x}\right)^r$
$T_{r+1} = \binom{6}{r} \left(\frac{3}{2}\right)^{6-r} (x^2)^{6-r} \left(-\frac{1}{3}\right)^r \left(\frac{1}{x}\right)^r$
$T_{r+1} = \binom{6}{r} \left(\frac{3}{2}\right)^{6-r} x^{2(6-r)} \left(-\frac{1}{3}\right)^r x^{-r}$
$T_{r+1} = \binom{6}{r} \left(\frac{3}{2}\right)^{6-r} \left(-\frac{1}{3}\right)^r x^{12-2r} x^{-r}$
Combine the terms with $x$ by adding their exponents:
$T_{r+1} = \binom{6}{r} \left(\frac{3}{2}\right)^{6-r} \left(-\frac{1}{3}\right)^r x^{12-2r-r}$
$T_{r+1} = \binom{6}{r} \left(\frac{3}{2}\right)^{6-r} \left(-\frac{1}{3}\right)^r x^{12-3r}$
The term independent of $x$ is the term where the exponent of $x$ is 0.
Set the exponent of $x$ in the general term equal to 0:
$12 - 3r = 0$
$3r = 12$
$r = \frac{12}{3} = 4$
So, the term independent of $x$ is the $(4+1)^{\text{th}}$, which is the 5th term.
Substitute $r=4$ into the expression for the general term, but only the coefficient part (the part without $x^{12-3r}$):
The term independent of $x$ is $T_5 = \binom{6}{4} \left(\frac{3}{2}\right)^{6-4} \left(-\frac{1}{3}\right)^4$.
$T_5 = \binom{6}{4} \left(\frac{3}{2}\right)^2 \left(-\frac{1}{3}\right)^4$
Now, calculate the values:
$\binom{6}{4} = \binom{6}{6-4} = \binom{6}{2} = \frac{6 \times 5}{2 \times 1} = 15$
$\left(\frac{3}{2}\right)^2 = \frac{3^2}{2^2} = \frac{9}{4}$
$\left(-\frac{1}{3}\right)^4 = (-1)^4 \times \left(\frac{1}{3}\right)^4 = 1 \times \frac{1^4}{3^4} = \frac{1}{81}$
Substitute these values into the expression for $T_5$:
$T_5 = 15 \times \frac{9}{4} \times \frac{1}{81}$
Cancel common factors:
$T_5 = \frac{15}{1} \times \frac{9}{4} \times \frac{1}{81} = \frac{15 \times \cancel{9}^{1}}{4 \times \cancel{81}^{9}} = \frac{\cancel{15}^{5} \times 1}{4 \times \cancel{9}^{3}} = \frac{5 \times 1}{4 \times 3} = \frac{5}{12}$
The term independent of $x$ is $\mathbf{\frac{5}{12}}$.
Example 11: If the coefficients of ar – 1 , ar and ar + 1 in the expansion of (1 + a)n are in arithmetic progression, prove that n2 – n(4r + 1) + 4r2 – 2 = 0.
Answer:
Given expansion:
$(1 + a)^n$
The general term in the expansion of $(1 + x)^n$ is $T_{k+1} = \binom{n}{k} x^k$. In this case, the expansion is $(1+a)^n$, so the general term is $T_{k+1} = \binom{n}{k} a^k$.
The coefficient of $a^k$ is $\binom{n}{k}$.
The coefficients of $a^{r-1}$, $a^r$, and $a^{r+1}$ are:
Coefficient of $a^{r-1}$ is $\binom{n}{r-1}$. (Assuming $r-1 \geq 0$, so $r \geq 1$)
Coefficient of $a^{r}$ is $\binom{n}{r}$. (Assuming $r \geq 0$)
Coefficient of $a^{r+1}$ is $\binom{n}{r+1}$. (Assuming $r+1 \leq n$, so $r \leq n-1$)
For all three coefficients to be non-zero and well-defined in the standard binomial expansion, we need $1 \leq r \leq n-1$. This implies $n \geq 2$.
We are given that these coefficients are in arithmetic progression (AP).
If three numbers $A, B, C$ are in AP, then the middle term is the average of the other two, i.e., $B = \frac{A+C}{2}$, which means $2B = A+C$.
So, $2 \times \binom{n}{r} = \binom{n}{r-1} + \binom{n}{r+1}$.
$2\binom{n}{r} = \binom{n}{r-1} + \binom{n}{r+1}$
... (i)
Express the binomial coefficients using the definition $\binom{n}{k} = \frac{n!}{k!(n-k)!}$:
$\binom{n}{r-1} = \frac{n!}{(r-1)!(n-(r-1))!} = \frac{n!}{(r-1)!(n-r+1)!}$
$\binom{n}{r} = \frac{n!}{r!(n-r)!}$
$\binom{n}{r+1} = \frac{n!}{(r+1)!(n-(r+1))!} = \frac{n!}{(r+1)!(n-r-1)!}$
Substitute these into equation (i):
$2 \times \frac{n!}{r!(n-r)!} = \frac{n!}{(r-1)!(n-r+1)!} + \frac{n!}{(r+1)!(n-r-1)!}$
Divide both sides by $n!$ (assuming $n! \neq 0$, which is true for integer $n \geq 0$):
$\frac{2}{r!(n-r)!} = \frac{1}{(r-1)!(n-r+1)!} + \frac{1}{(r+1)!(n-r-1)!}$
Express the factorials in terms of the smallest factorials in the denominator:
$r! = r \times (r-1)!$
$(r+1)! = (r+1) \times r \times (r-1)!$
$(n-r)! = (n-r) \times (n-r-1)!$
$(n-r+1)! = (n-r+1) \times (n-r) \times (n-r-1)!$
Substitute these expansions into the equation:
$\frac{2}{r(r-1)!(n-r)(n-r-1)!} = \frac{1}{(r-1)!(n-r+1)(n-r)(n-r-1)!} + \frac{1}{(r+1)r(r-1)!(n-r-1)!}$
Multiply both sides by $(r-1)!(n-r-1)!$ (assuming they are non-zero):
$\frac{2}{r(n-r)} = \frac{1}{(n-r+1)(n-r)} + \frac{1}{(r+1)r}$
Find a common denominator on the right side, which is $(n-r+1)(n-r)(r+1)r$:
$\frac{2}{r(n-r)} = \frac{(r+1)r + (n-r+1)(n-r)}{(n-r+1)(n-r)(r+1)r}$
$\frac{2}{r(n-r)} = \frac{r^2+r + n^2 - nr + n - nr + r^2 - r}{(n-r+1)(n-r)(r+1)r}$
$\frac{2}{r(n-r)} = \frac{r^2+r + n^2 - 2nr + n + r^2 - r}{(n-r+1)(n-r)(r+1)r}$
$\frac{2}{r(n-r)} = \frac{2r^2 + n^2 - 2nr + n}{(n-r+1)(n-r)(r+1)r}$
Cross-multiply:
$2(n-r+1)(n-r)(r+1)r = r(n-r)(2r^2 + n^2 - 2nr + n)$
Assuming $r \neq 0$ and $n-r \neq 0$ (which is true from $1 \leq r \leq n-1$), we can divide both sides by $r(n-r)$:
$2(n-r+1)(r+1) = 2r^2 + n^2 - 2nr + n$
Expand the left side:
$2(nr + n + (-r)r + (-r) + 1r + 1)$
$2(nr + n - r^2 - r + r + 1)$
$2(nr + n - r^2 + 1)$
$2nr + 2n - 2r^2 + 2$
So, $2nr + 2n - 2r^2 + 2 = 2r^2 + n^2 - 2nr + n$
Move all terms to one side (e.g., to the right side):
$0 = (n^2 - 2nr + n + 2r^2) - (2nr + 2n - 2r^2 + 2)$
$0 = n^2 - 2nr + n + 2r^2 - 2nr - 2n + 2r^2 - 2$
Combine like terms:
$0 = n^2 + (-2nr - 2nr) + (n - 2n) + (2r^2 + 2r^2) - 2$
$0 = n^2 - 4nr - n + 4r^2 - 2$
Rearrange the terms to match the desired form:
$n^2 - n - 4nr + 4r^2 - 2 = 0$
$n^2 - n(1 + 4r) + 4r^2 - 2 = 0$
$n^2 - n(4r + 1) + 4r^2 - 2 = 0$
This matches the equation we needed to prove.
Hence Proved.
Example 12: Show that the coefficient of the middle term in the expansion of (1 + x)2n is equal to the sum of the coefficients of two middle terms in the expansion of (1 + x)2n – 1 .
Answer:
Given expansions:
$(1 + x)^{2n}$ and $(1 + x)^{2n-1}$
To Show:
The coefficient of the middle term in $(1 + x)^{2n}$ is equal to the sum of the coefficients of the two middle terms in $(1 + x)^{2n – 1}$.
Proof:
Consider the expansion of $(1+x)^N$. The general term is $T_{k+1} = \binom{N}{k} 1^{N-k} x^k = \binom{N}{k} x^k$. The coefficient of $x^k$ is $\binom{N}{k}$.
Expansion of $(1 + x)^{2n}$:
The power is $N_1 = 2n$. The number of terms is $2n+1$. Since $2n+1$ is odd, there is one middle term.
The position of the middle term is $\left(\frac{(2n+1)+1}{2}\right)^{\text{th}} = (n+1)^{\text{th}}$.
The middle term is $T_{n+1}$. The coefficient of the middle term is obtained by setting $k=n$ and $N=2n$ in $\binom{N}{k}$.
Coefficient of the middle term in $(1+x)^{2n} = \binom{2n}{n}$.
Coefficient$_1 = \binom{2n}{n} $
... (i)
Expansion of $(1 + x)^{2n-1}$:
The power is $N_2 = 2n-1$. The number of terms is $(2n-1)+1 = 2n$. Since $2n$ is even, there are two middle terms.
The positions of the two middle terms are $\left(\frac{2n}{2}\right)^{\text{th}} = n^{\text{th}}$ and $\left(\frac{2n}{2}+1\right)^{\text{th}} = (n+1)^{\text{th}}$.
The coefficients of these terms are obtained by setting $N=2n-1$ and $k=n-1$ (for the $n^{\text{th}}$ term) and $k=n$ (for the $(n+1)^{\text{th}}$ term) in $\binom{N}{k}$.
Coefficient of the first middle term ($n^{\text{th}}$ term) in $(1+x)^{2n-1} = \binom{2n-1}{n-1}$.
Coefficient of the second middle term ($(n+1)^{\text{th}}$ term) in $(1+x)^{2n-1} = \binom{2n-1}{n}$.
Coefficient$_2 = \binom{2n-1}{n-1} + \binom{2n-1}{n} $
... (ii)
We need to show that Coefficient$_1$ = Coefficient$_2$.
That is, we need to prove $\binom{2n}{n} = \binom{2n-1}{n-1} + \binom{2n-1}{n}$.
This is a well-known identity in combinatorics and Pascal's triangle: $\binom{N}{k} = \binom{N-1}{k-1} + \binom{N-1}{k}$.
Let $N = 2n$ and $k = n$. Substituting these values into the identity:
$\binom{2n}{n} = \binom{2n-1}{n-1} + \binom{2n-1}{n}$.
Alternatively, we can prove this identity using the definition of binomial coefficients $\binom{N}{k} = \frac{N!}{k!(N-k)!}$:
Consider the right side of the identity:
RHS = $\binom{2n-1}{n-1} + \binom{2n-1}{n}$
RHS = $\frac{(2n-1)!}{(n-1)!((2n-1)-(n-1))!} + \frac{(2n-1)!}{n!((2n-1)-n)!}$
RHS = $\frac{(2n-1)!}{(n-1)!(2n-n) \times (n-1)!} + \frac{(2n-1)!}{n!(n-1)!}$ No, factorial expansion error.
RHS = $\frac{(2n-1)!}{(n-1)!(2n-1-n+1)!} + \frac{(2n-1)!}{n!(2n-1-n)!}$
RHS = $\frac{(2n-1)!}{(n-1)!n!} + \frac{(2n-1)!}{n!(n-1)!}$
To add these fractions, we use the common denominator $n!(n-1)!$. However, the terms are already over a common denominator (since $n!(n-1)! = (n-1)!n!$). Let's find a common denominator that includes $n!$ for both terms.
We know $n! = n \times (n-1)!$. So, $(n-1)! = \frac{n!}{n}$.
RHS = $\frac{(2n-1)!}{\left(\frac{n!}{n}\right)n!} + \frac{(2n-1)!}{n!(n-1)!}$ No, this is not the correct way to find a common denominator.
Let the common denominator be $n!(n-1)!$.
RHS = $\frac{(2n-1)!}{(n-1)!n!} + \frac{(2n-1)!}{n!(n-1)!}$
We can factor out $(2n-1)!$ and $\frac{1}{(n-1)!}$:
RHS = $(2n-1)! \frac{1}{(n-1)!} \left( \frac{1}{n!} + \frac{1}{n!} \right)$ No, the second denominator is $n!(n-1)!$.
RHS = $\frac{(2n-1)!}{(n-1)!n!} + \frac{(2n-1)!}{n!(n-1)!}$
The common denominator is $n!(n-1)!$. Multiply the numerator and denominator of the first fraction by $n$ and the second fraction by $n$. No, just multiply the first fraction by $n/n$ to get $n!$ in the denominator and the second by nothing as it already has $n!$
RHS = $\frac{(2n-1)!}{(n-1)!n!} = \frac{(2n-1)! \times n}{(n-1)! n! \times n}$ No, this gives $n!n!$ denominator.
Let's rewrite the denominators as $n!(n-1)!$ for both terms.
RHS = $\frac{(2n-1)!}{(n-1)!n!} + \frac{(2n-1)!}{n!(n-1)!}$
RHS = $\frac{(2n-1)!}{(n-1)!n!} + \frac{(2n-1)!}{(n-1)!n!}$
RHS = $\frac{(2n-1)! + (2n-1)!}{(n-1)!n!}$
RHS = $\frac{2 \times (2n-1)!}{(n-1)!n!}$
Now, let's look at the left side of the identity:
LHS = $\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!}$
We know that $(2n)! = 2n \times (2n-1)!$.
LHS = $\frac{2n \times (2n-1)!}{n!n!}$
We know that $n! = n \times (n-1)!$. Substitute this for one of the $n!$ in the denominator:
LHS = $\frac{2n \times (2n-1)!}{n! \times (n \times (n-1)!)}$
Rearrange the denominator: $n! \times n \times (n-1)! = n \times n! \times (n-1)!$. This is not helping.
Let's use $n! = n \times (n-1)!$ on one of the $n!$ in the denominator: $\frac{(2n)!}{n!n!} = \frac{(2n)!}{n! \times n \times (n-1)!}$. This does not simplify to the RHS form.
Let's use the expansion $(2n)! = 2n \times (2n-1)!$ in the numerator of the LHS.
LHS = $\frac{2n \times (2n-1)!}{n!n!}$
Now, let's expand one of the $n!$ in the denominator as $n \times (n-1)!$:
LHS = $\frac{2n \times (2n-1)!}{n! \times n \times (n-1)!}$ No.
LHS = $\frac{2n \times (2n-1)!}{n \times (n-1)! \times n!}$
Cancel the term 'n' from the numerator and denominator:
LHS = $\frac{2 \times (2n-1)!}{(n-1)! \times n!}$
LHS = $\frac{2 \times (2n-1)!}{n!(n-1)!}$
Comparing the simplified LHS and RHS:
LHS = $\frac{2 \times (2n-1)!}{n!(n-1)!}$
RHS = $\frac{2 \times (2n-1)!}{(n-1)!n!}$
LHS = RHS.
Thus, we have shown that $\binom{2n}{n} = \binom{2n-1}{n-1} + \binom{2n-1}{n}$.
This proves that the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is equal to the sum of the coefficients of the two middle terms in the expansion of $(1 + x)^{2n – 1}$.
Hence Showed.
Example 13: Find the coefficient of a 4 in the product (1 + 2a)4 (2 – a)5 using binomial theorem.
Answer:
Given expression:
The product $(1 + 2a)^4 (2 – a)^5$
To Find:
The coefficient of $a^4$ in the expansion of the product.
Solution:
We will expand each factor using the Binomial Theorem.
The Binomial Theorem states that $(x+y)^n = \sum\limits_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$.
Consider the first factor, $(1 + 2a)^4$. Here $x=1$, $y=2a$, $n=4$.
The general term in this expansion is $T_{r+1} = \binom{4}{r} (1)^{4-r} (2a)^r = \binom{4}{r} 1 \cdot 2^r a^r = \binom{4}{r} 2^r a^r$.
The terms in the expansion of $(1 + 2a)^4$ are of the form $\binom{4}{r} 2^r a^r$ for $r = 0, 1, 2, 3, 4$.
Consider the second factor, $(2 – a)^5$. Here $x=2$, $y=-a$, $n=5$.
The general term in this expansion is $T'_{k+1} = \binom{5}{k} (2)^{5-k} (-a)^k = \binom{5}{k} 2^{5-k} (-1)^k a^k$.
The terms in the expansion of $(2 – a)^5$ are of the form $\binom{5}{k} 2^{5-k} (-1)^k a^k$ for $k = 0, 1, 2, 3, 4, 5$.
The product is $(1 + 2a)^4 (2 – a)^5$. When we multiply the expansions of these two factors, a term containing $a^4$ is obtained by multiplying a term with $a^r$ from the first expansion by a term with $a^k$ from the second expansion such that the sum of the exponents is 4, i.e., $r+k=4$.
The possible pairs of $(r, k)$ such that $r+k=4$, with $0 \leq r \leq 4$ and $0 \leq k \leq 5$, are:
$(r, k) \in \{(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)\}$
The coefficient of $a^4$ in the product is the sum of the products of the coefficients of the terms $a^r$ and $a^k$ for each of these pairs $(r, k)$.
Coefficient of $a^4 = \sum_{r+k=4} (\text{Coefficient of } a^r \text{ in } (1+2a)^4) \times (\text{Coefficient of } a^k \text{ in } (2-a)^5)$
Coefficient of $a^4 = \binom{4}{0}2^0 \binom{5}{4}2^{5-4}(-1)^4 + \binom{4}{1}2^1 \binom{5}{3}2^{5-3}(-1)^3 + \binom{4}{2}2^2 \binom{5}{2}2^{5-2}(-1)^2 + \binom{4}{3}2^3 \binom{5}{1}2^{5-1}(-1)^1 + \binom{4}{4}2^4 \binom{5}{0}2^{5-0}(-1)^0$
Let's calculate each part:
For $(r,k)=(0,4)$: $\binom{4}{0}2^0 \times \binom{5}{4}2^{1}(-1)^4 = (1 \times 1) \times (5 \times 2 \times 1) = 1 \times 10 = 10$
For $(r,k)=(1,3)$: $\binom{4}{1}2^1 \times \binom{5}{3}2^{2}(-1)^3 = (4 \times 2) \times (10 \times 4 \times -1) = 8 \times (-40) = -320$
For $(r,k)=(2,2)$: $\binom{4}{2}2^2 \times \binom{5}{2}2^{3}(-1)^2 = (6 \times 4) \times (10 \times 8 \times 1) = 24 \times 80 = 1920$
For $(r,k)=(3,1)$: $\binom{4}{3}2^3 \times \binom{5}{1}2^{4}(-1)^1 = (4 \times 8) \times (5 \times 16 \times -1) = 32 \times (-80) = -2560$
For $(r,k)=(4,0)$: $\binom{4}{4}2^4 \times \binom{5}{0}2^{5}(-1)^0 = (1 \times 16) \times (1 \times 32 \times 1) = 16 \times 32 = 512$
The coefficient of $a^4$ is the sum of these values:
$10 + (-320) + 1920 + (-2560) + 512$
$= 10 - 320 + 1920 - 2560 + 512$
$= (10 + 1920 + 512) - (320 + 2560)$
$= 2442 - 2880$
$= -438$
The coefficient of $a^4$ in the product $(1 + 2a)^4 (2 – a)^5$ is $\mathbf{-438}$.
Example 14: Find the rth term from the end in the expansion of (x + a)n .
Answer:
Given expansion:
$(x + a)^n$
To Find:
The $r^{\text{th}}$ term from the end of the expansion.
Solution:
The total number of terms in the expansion of $(x + a)^n$ is $n+1$.
Let's consider the terms from the beginning:
1st term from beginning is $T_1 = \binom{n}{0}x^n a^0$
2nd term from beginning is $T_2 = \binom{n}{1}x^{n-1} a^1$
$k^{\text{th}}$ term from beginning is $T_k = \binom{n}{k-1}x^{n-(k-1)} a^{k-1}$
$(r+1)^{\text{th}}$ term from beginning is $T_{r+1} = \binom{n}{r}x^{n-r} a^{r}$
Now consider the terms from the end:
1st term from the end is the last term, which is the $(n+1)^{\text{th}}$ term from the beginning.
2nd term from the end is the $n^{\text{th}}$ term from the beginning.
3rd term from the end is the $(n-1)^{\text{th}}$ term from the beginning.
The $r^{\text{th}}$ term from the end is the $(n+1 - r + 1)^{\text{th}}$ term from the beginning.
The $r^{\text{th}}$ term from the end is the $(n-r+2)^{\text{th}}$ term from the beginning.
To find the $(n-r+2)^{\text{th}}$ term from the beginning using the general term formula $T_{k} = \binom{n}{k-1}x^{n-(k-1)} a^{k-1}$, we set $k = n-r+2$.
The index for the binomial coefficient is $k-1 = (n-r+2) - 1 = n-r+1$.
The exponent of $x$ is $n-(k-1) = n-(n-r+1) = n-n+r-1 = r-1$.
The exponent of $a$ is $k-1 = n-r+1$.
So, the $(n-r+2)^{\text{th}}$ term from the beginning is $T_{n-r+2} = \binom{n}{n-r+1} x^{r-1} a^{n-r+1}$.
Alternatively, we can consider the expansion of $(a+x)^n$. The $r^{\text{th}}$ term from the beginning in $(a+x)^n$ is the same as the $r^{\text{th}}$ term from the end in $(x+a)^n$.
The general term in the expansion of $(a+x)^n$ is $T'_{k+1} = \binom{n}{k} a^{n-k} x^k$.
The $r^{\text{th}}$ term from the beginning of $(a+x)^n$ corresponds to $k+1 = r$, so $k = r-1$.
Substituting $k=r-1$ into the general term formula for $(a+x)^n$:
$T'_r = T_{(r-1)+1} = \binom{n}{r-1} a^{n-(r-1)} x^{r-1}$
$T'_r = \binom{n}{r-1} a^{n-r+1} x^{r-1}$
The $r^{\text{th}}$ term from the end in the expansion of $(x + a)^n$ is the same as the $r^{\text{th}}$ term from the beginning in the expansion of $(a + x)^n$.
The $r^{\text{th}}$ term from the beginning of $(a+x)^n$ is $T_r = \binom{n}{r-1} a^{n-r+1} x^{r-1}$.
Using the property $\binom{n}{k} = \binom{n}{n-k}$, we can see that $\binom{n}{n-r+1} = \binom{n}{n-(n-r+1)} = \binom{n}{n-n+r-1} = \binom{n}{r-1}$.
So the two methods give the same result.
The $r^{\text{th}}$ term from the end in the expansion of $(x + a)^n$ is $\binom{n}{r-1} x^{r-1} a^{n-r+1}$.
The $r^{\text{th}}$ term from the end in the expansion of $(x + a)^n$ is $\mathbf{\binom{n}{r-1} x^{r-1} a^{n-r+1}}$.
Example 15: Find the term independent of x in the expansion of $\left( \sqrt [3] {x} + \frac{1}{2\sqrt [3] {x}} \right)^{18} \;,\; x>0$ .
Answer:
Given expansion:
$\left( \sqrt [3] {x} + \frac{1}{2\sqrt [3] {x}} \right)^{18}$
To Find:
The term independent of $x$ in the expansion.
Solution:
The expansion is of the form $(a+b)^n$, where:
$a = \sqrt[3]{x} = x^{1/3}$
$b = \frac{1}{2\sqrt[3]{x}} = \frac{1}{2x^{1/3}} = \frac{1}{2}x^{-1/3}$
$n = 18$
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=18$, $a=x^{1/3}$, and $b=\frac{1}{2}x^{-1/3}$:
$T_{r+1} = \binom{18}{r} (x^{1/3})^{18-r} \left(\frac{1}{2}x^{-1/3}\right)^r$
$T_{r+1} = \binom{18}{r} x^{(1/3)(18-r)} \left(\frac{1}{2}\right)^r (x^{-1/3})^r$
$T_{r+1} = \binom{18}{r} x^{\frac{18-r}{3}} \left(\frac{1}{2}\right)^r x^{-\frac{r}{3}}$
Combine the terms with $x$ by adding their exponents:
$T_{r+1} = \binom{18}{r} \left(\frac{1}{2}\right)^r x^{\frac{18-r}{3} - \frac{r}{3}}$
$T_{r+1} = \binom{18}{r} \left(\frac{1}{2}\right)^r x^{\frac{18-2r}{3}}$
The term independent of $x$ is the term where the exponent of $x$ is 0.
Set the exponent of $x$ in the general term equal to 0:
$\frac{18-2r}{3} = 0$
$18 - 2r = 0$
$2r = 18$
$r = 9$
So, the term independent of $x$ is the $(9+1)^{\text{th}}$, which is the 10th term.
Substitute $r=9$ into the expression for the general term, excluding the $x$ part:
The term independent of $x$ is $T_{10} = \binom{18}{9} \left(\frac{1}{2}\right)^9$.
Now, calculate the values:
$\binom{18}{9} = \frac{18!}{9!(18-9)!} = \frac{18!}{9!9!}$
$\binom{18}{9} = \frac{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9!}{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 9!}$
$\binom{18}{9} = \frac{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10}{362880}$
$\binom{18}{9} = 48620$
$\left(\frac{1}{2}\right)^9 = \frac{1^9}{2^9} = \frac{1}{512}$
Substitute these values into the expression for $T_{10}$:
$T_{10} = 48620 \times \frac{1}{512} = \frac{48620}{512}$
Simplify the fraction by dividing the numerator and denominator by their greatest common divisor. Both are divisible by 4.
$\frac{48620 \div 4}{512 \div 4} = \frac{12155}{128}$
The term independent of $x$ is $\mathbf{\frac{12155}{128}}$.
Example 16: The sum of the coefficients of the first three terms in the expansion of $\left( x-\frac{3}{x^{2}} \right)^{m} \;,\; x \neq 0 ,$ m being a natural number, is 559. Find the term of the expansion containing x3 .
Answer:
Given expansion:
$\left( x-\frac{3}{x^{2}} \right)^{m}$
This is in the form $(a+b)^n$, where $a = x$, $b = -\frac{3}{x^2}$, and $n = m$.
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} a^{n-r} b^r$
Substitute the values $n=m$, $a=x$, and $b=-\frac{3}{x^2}$:
$T_{r+1} = \binom{m}{r} (x)^{m-r} \left(-\frac{3}{x^2}\right)^r$
$T_{r+1} = \binom{m}{r} x^{m-r} (-3)^r \left(\frac{1}{x^2}\right)^r$
$T_{r+1} = \binom{m}{r} (-3)^r x^{m-r} (x^{-2})^r$
$T_{r+1} = \binom{m}{r} (-3)^r x^{m-r} x^{-2r}$
Combine the terms with $x$ by adding their exponents:
$T_{r+1} = \binom{m}{r} (-3)^r x^{m-r-2r}$
$T_{r+1} = \binom{m}{r} (-3)^r x^{m-3r}$
The coefficients of the first three terms correspond to $r=0$, $r=1$, and $r=2$ in the general term.
Coefficient of the 1st term ($r=0$): $\binom{m}{0} (-3)^0 = 1 \times 1 = 1$.
Coefficient of the 2nd term ($r=1$): $\binom{m}{1} (-3)^1 = m \times (-3) = -3m$.
Coefficient of the 3rd term ($r=2$): $\binom{m}{2} (-3)^2 = \frac{m(m-1)}{2!} \times 9 = \frac{9m(m-1)}{2}$.
The sum of these coefficients is given as 559.
$1 + (-3m) + \frac{9m(m-1)}{2} = 559$
$1 - 3m + \frac{9m^2 - 9m}{2} = 559$
Multiply the entire equation by 2 to eliminate the fraction:
$2(1) - 2(3m) + 2\left(\frac{9m^2 - 9m}{2}\right) = 2(559)$
$2 - 6m + 9m^2 - 9m = 1118$
$9m^2 - 15m + 2 = 1118$
Subtract 1118 from both sides to form a quadratic equation:
$9m^2 - 15m + 2 - 1118 = 0$
$9m^2 - 15m - 1116 = 0$
Divide the equation by the greatest common divisor of the coefficients (3):
$\frac{9m^2}{3} - \frac{15m}{3} - \frac{1116}{3} = \frac{0}{3}$
$3m^2 - 5m - 372 = 0$
Solve this quadratic equation for $m$ using the quadratic formula: $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.
Here, $a=3$, $b=-5$, $c=-372$.
$m = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-372)}}{2(3)}$
$m = \frac{5 \pm \sqrt{25 + 12 \times 372}}{6}$
$12 \times 372 = 4464$.
$m = \frac{5 \pm \sqrt{25 + 4464}}{6}$
$m = \frac{5 \pm \sqrt{4489}}{6}$
We need to find the square root of 4489. $60^2=3600$, $70^2=4900$. The number ends in 9, so the unit digit of the square root must be 3 or 7. Let's try 67. $67 \times 67 = 4489$.
$m = \frac{5 \pm 67}{6}$
We have two possible values for $m$:
$m_1 = \frac{5 + 67}{6} = \frac{72}{6} = 12$
$m_2 = \frac{5 - 67}{6} = \frac{-62}{6} = -\frac{31}{3}$
Since $m$ is a natural number, we must choose the positive integer value.
$m = 12$.
Now that we have found $m=12$, we need to find the term of the expansion containing $x^3$.
The general term is $T_{r+1} = \binom{m}{r} (-3)^r x^{m-3r}$. Substitute $m=12$:
$T_{r+1} = \binom{12}{r} (-3)^r x^{12-3r}$
We want the term containing $x^3$, so the exponent of $x$ must be 3.
Set the exponent of $x$ equal to 3:
$12 - 3r = 3$
$12 - 3 = 3r$
$9 = 3r$
$r = \frac{9}{3} = 3$
So, the term containing $x^3$ is the $(3+1)^{\text{th}}$, which is the 4th term.
Substitute $r=3$ into the general term expression (with $m=12$):
$T_4 = T_{3+1} = \binom{12}{3} (-3)^3 x^{12-3(3)}$
$T_4 = \binom{12}{3} (-3)^3 x^{12-9}$
$T_4 = \binom{12}{3} (-3)^3 x^3$
Now, calculate the values of the binomial coefficient and the power of -3:
$\binom{12}{3} = \frac{12!}{3!(12-3)!} = \frac{12!}{3!9!} = \frac{12 \times 11 \times 10 \times 9!}{3 \times 2 \times 1 \times 9!} = \frac{12 \times 11 \times 10}{6} = 2 \times 11 \times 10 = 220$
$(-3)^3 = (-1)^3 \times 3^3 = -1 \times 27 = -27$
Substitute these values back into the expression for $T_4$:
$T_4 = 220 \times (-27) \times x^3$
Calculate $220 \times (-27)$: $220 \times 27 = 5940$. So, $220 \times (-27) = -5940$.
The term containing $x^3$ is $-5940 x^3$.
The term of the expansion containing $x^3$ is $\mathbf{-5940 x^3}$.
Example 17: If the coefficients of (r – 5)th and (2r – 1)th terms in the expansion of (1 + x)34 are equal, find r.
Answer:
Given expansion:
$(1 + x)^{34}$
This is in the form $(1+a)^n$, where $a=x$ and $n=34$.
To Find:
The value of $r$ such that the coefficients of the $(r-5)^{\text{th}}$ term and the $(2r-1)^{\text{th}}$ term are equal.
Solution:
The general term in the expansion of $(1+x)^n$ is the $(k+1)^{\text{th}}$ term, given by $T_{k+1} = \binom{n}{k} 1^{n-k} x^k = \binom{n}{k} x^k$.
The coefficient of the $(k+1)^{\text{th}}$ term is $\binom{n}{k}$.
For the $(r-5)^{\text{th}}$ term, the term number is $r-5$. So, $k+1 = r-5$, which means $k = r-5-1 = r-6$.
The coefficient of the $(r-5)^{\text{th}}$ term is $\binom{34}{r-6}$.
For this coefficient to be well-defined, the lower index must be a non-negative integer and less than or equal to the upper index. So, $r-6 \geq 0$ and $r-6 \leq 34$.
$r \geq 6$ and $r \leq 40$.
For the $(2r-1)^{\text{th}}$ term, the term number is $2r-1$. So, $k+1 = 2r-1$, which means $k = 2r-1-1 = 2r-2$.
The coefficient of the $(2r-1)^{\text{th}}$ term is $\binom{34}{2r-2}$.
For this coefficient to be well-defined, the lower index must be a non-negative integer and less than or equal to the upper index. So, $2r-2 \geq 0$ and $2r-2 \leq 34$.
$2r \geq 2 \implies r \geq 1$.
$2r \leq 36 \implies r \leq 18$.
We are given that the coefficients of the $(r-5)^{\text{th}}$ term and the $(2r-1)^{\text{th}}$ term are equal.
$\binom{34}{r-6} = \binom{34}{2r-2}$
$\binom{34}{r-6} = \binom{34}{2r-2} $
... (i)
We use the property of binomial coefficients: If $\binom{n}{a} = \binom{n}{b}$, then either $a=b$ or $a=n-b$.
In this case, $n=34$, $a=r-6$, and $b=2r-2$.
Case 1: The lower indices are equal.
$r-6 = 2r-2$
Rearranging the terms:
$-6 + 2 = 2r - r$
$-4 = r$
$r = -4$
Case 2: The sum of the lower indices equals the upper index.
$(r-6) + (2r-2) = 34$
$r - 6 + 2r - 2 = 34$
$3r - 8 = 34$
$3r = 34 + 8$
$3r = 42$
$r = \frac{42}{3} = 14$
Now we check if these values of $r$ satisfy the validity conditions for the indices derived earlier ($r \geq 6$, $r \leq 40$, $r \geq 1$, $r \leq 18$). The combined conditions are $6 \leq r \leq 18$.
For $r = -4$:
$r \geq 6$ ($-4 \geq 6$) is False.
This value of $r$ is not valid as the $(r-5)^{\text{th}}$ term would be the $(-9)^{\text{th}}$ term, which does not exist in a standard binomial expansion starting from the 1st term.
For $r = 14$:
$r \geq 6$ ($14 \geq 6$) is True.
$r \leq 40$ ($14 \leq 40$) is True.
$r \geq 1$ ($14 \geq 1$) is True.
$r \leq 18$ ($14 \leq 18$) is True.
All conditions are satisfied for $r=14$. The terms are the $(14-5)^{\text{th}} = 9^{\text{th}}$ term (coefficient $\binom{34}{8}$) and the $(2 \times 14 - 1)^{\text{th}} = (28-1)^{\text{th}} = 27^{\text{th}}$ term (coefficient $\binom{34}{26}$).
Check $\binom{34}{8} = \binom{34}{26}$: This is true because $\binom{n}{k} = \binom{n}{n-k}$, so $\binom{34}{8} = \binom{34}{34-8} = \binom{34}{26}$.
The only valid value for $r$ is 14.
The value of r is $\mathbf{14}$.
Miscellaneous Exercise on Chapter 8
Question 1. Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Answer:
Given:
The first three terms of the expansion $(a + b)^n$ are 729, 7290, and 30375.
Let the terms be $T_1$, $T_2$, and $T_3$.
$T_1 = 729$
$T_2 = 7290$
$T_3 = 30375$
To Find:
The values of $a$, $b$, and $n$.
Solution:
The general term $(k+1)^{\text{th}}$ in the expansion of $(a+b)^n$ is given by $T_{k+1} = \binom{n}{k} a^{n-k} b^k$.
The first term is $T_1$ (when $k=0$):
$T_1 = \binom{n}{0} a^{n-0} b^0 = 1 \cdot a^n \cdot 1 = a^n$
$a^n = 729$
... (i)
The second term is $T_2$ (when $k=1$):
$T_2 = \binom{n}{1} a^{n-1} b^1 = n a^{n-1} b$
$n a^{n-1} b = 7290$
... (ii)
The third term is $T_3$ (when $k=2$):
$T_3 = \binom{n}{2} a^{n-2} b^2 = \frac{n(n-1)}{2} a^{n-2} b^2$
$\frac{n(n-1)}{2} a^{n-2} b^2 = 30375$
... (iii)
Divide the second term by the first term:
$\frac{T_2}{T_1} = \frac{n a^{n-1} b}{a^n} = \frac{7290}{729}$
$n \frac{a^{n-1}}{a^n} b = 10$
$n a^{n-1-n} b = 10$
$n a^{-1} b = 10$
$n \frac{b}{a} = 10$
... (iv)
Divide the third term by the second term:
$\frac{T_3}{T_2} = \frac{\frac{n(n-1)}{2} a^{n-2} b^2}{n a^{n-1} b} = \frac{30375}{7290}$
Simplify the numerical fraction:
$\frac{30375}{7290} = \frac{\cancel{30375}^{6075}}{\cancel{7290}_{1458}} = \frac{\cancel{6075}^{675}}{\cancel{1458}_{162}} = \frac{\cancel{675}^{75}}{\cancel{162}_{18}} = \frac{\cancel{75}^{25}}{\cancel{18}_{6}} = \frac{25}{6}$
So, $\frac{\frac{n(n-1)}{2} a^{n-2} b^2}{n a^{n-1} b} = \frac{25}{6}$
$\frac{n(n-1)}{2n} \frac{a^{n-2}}{a^{n-1}} \frac{b^2}{b} = \frac{25}{6}$
$\frac{n-1}{2} a^{(n-2)-(n-1)} b^{2-1} = \frac{25}{6}$
$\frac{n-1}{2} a^{-1} b^1 = \frac{25}{6}$
$\frac{n-1}{2} \frac{b}{a} = \frac{25}{6}$
... (v)
From equation (iv), we have $\frac{b}{a} = \frac{10}{n}$. Substitute this into equation (v):
$\frac{n-1}{2} \left(\frac{10}{n}\right) = \frac{25}{6}$
$\frac{10(n-1)}{2n} = \frac{25}{6}$
$\frac{5(n-1)}{n} = \frac{25}{6}$
Divide both sides by 5:
$\frac{n-1}{n} = \frac{5}{6}$
Cross-multiply:
$6(n-1) = 5n$
$6n - 6 = 5n$
$6n - 5n = 6$
$n = 6$
... (vi)
Substitute $n=6$ into equation (iv):
$6 \frac{b}{a} = 10$
$\frac{b}{a} = \frac{10}{6} = \frac{5}{3}$
... (vii)
Substitute $n=6$ into equation (i):
$a^n = 729$
$a^6 = 729$
Since $3^6 = (3^2)^3 = 9^3 = 729$, we have $a=3$ (assuming $a$ is real and positive, typical for expansion terms). If $a$ could be negative, $a=-3$ is also possible, but usually in such problems $a$ and $b$ are assumed positive unless specified otherwise).
$a = 3$
... (viii)
Substitute $a=3$ into equation (vii):
$\frac{b}{3} = \frac{5}{3}$
$b = \frac{5}{3} \times 3$
$b = 5$
... (ix)
Verify the values with the original terms:
$T_1 = a^n = 3^6 = 729$. Correct.
$T_2 = na^{n-1}b = 6 \times 3^{6-1} \times 5 = 6 \times 3^5 \times 5 = 6 \times 243 \times 5 = 30 \times 243 = 7290$. Correct.
$T_3 = \frac{n(n-1)}{2} a^{n-2} b^2 = \frac{6(6-1)}{2} \times 3^{6-2} \times 5^2 = \frac{6 \times 5}{2} \times 3^4 \times 25 = 15 \times 81 \times 25 = 15 \times 2025 = 30375$. Correct.
The values are $\mathbf{a=3}$, $\mathbf{b=5}$, and $\mathbf{n=6}$.
Question 2. Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Answer:
Given expansion:
$(3 + ax)^9$
This is in the form $(u+v)^n$, where $u=3$, $v=ax$, and $n=9$.
To Find:
The value of $a$ such that the coefficients of $x^2$ and $x^3$ in the expansion are equal.
Solution:
The general term (the $(r+1)^{\text{th}}$ term) in the expansion of $(u+v)^n$ is given by the formula:
$T_{r+1} = \binom{n}{r} u^{n-r} v^r$
Substitute the values $n=9$, $u=3$, and $v=ax$:
$T_{r+1} = \binom{9}{r} (3)^{9-r} (ax)^r$
$T_{r+1} = \binom{9}{r} 3^{9-r} a^r x^r$
$T_{r+1} = \binom{9}{r} 3^{9-r} a^r x^r$
The coefficient of the term containing $x^r$ is $\binom{9}{r} 3^{9-r} a^r$.
We are looking for the coefficients of $x^2$ and $x^3$.
For the coefficient of $x^2$, we set the exponent of $x$ equal to 2, so $r=2$.
Coefficient of $x^2 = \binom{9}{2} 3^{9-2} a^2 = \binom{9}{2} 3^7 a^2$.
For the coefficient of $x^3$, we set the exponent of $x$ equal to 3, so $r=3$.
Coefficient of $x^3 = \binom{9}{3} 3^{9-3} a^3 = \binom{9}{3} 3^6 a^3$.
We are given that these coefficients are equal.
Coefficient of $x^2$ = Coefficient of $x^3$
$\binom{9}{2} 3^7 a^2 = \binom{9}{3} 3^6 a^3$
... (i)
Calculate the binomial coefficients:
$\binom{9}{2} = \frac{9!}{2!(9-2)!} = \frac{9!}{2!7!} = \frac{9 \times 8}{2 \times 1} = 36$.
$\binom{9}{3} = \frac{9!}{3!(9-3)!} = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84$.
Substitute these values into equation (i):
$36 \times 3^7 \times a^2 = 84 \times 3^6 \times a^3$
We assume $a \neq 0$, otherwise the coefficients of $x^2$ and $x^3$ would be 0 (for $r \geq 1$), but the coefficient of $x^0$ is non-zero, so the terms exist. If $a=0$, the expansion is just $3^9$, the only non-zero coefficient is for $x^0$, which is 1. The coefficients of $x^2$ and $x^3$ would be 0, and $0=0$, so $a=0$ is a possible solution if the problem statement allows $a=0$. However, usually problems imply the existence of the terms with non-zero coefficients unless $n$ is too small. Here $n=9$, so terms with $x^2$ and $x^3$ exist and have non-zero combinatorial factors.
Divide both sides by $3^6 a^2$ (assuming $a \neq 0$ and $3^6 \neq 0$):
$\frac{36 \times 3^7 \times a^2}{3^6 a^2} = \frac{84 \times 3^6 \times a^3}{3^6 a^2}$
$36 \times 3^{7-6} \times a^{2-2} = 84 \times 3^{6-6} \times a^{3-2}$
$36 \times 3^1 \times a^0 = 84 \times 3^0 \times a^1$
$36 \times 3 \times 1 = 84 \times 1 \times a$
$108 = 84a$
$a = \frac{108}{84}$
Simplify the fraction $\frac{108}{84}$. Both numerator and denominator are divisible by 12.
$\frac{108 \div 12}{84 \div 12} = \frac{9}{7}$
$a = \frac{9}{7}$
The value of $a$ is $\mathbf{\frac{9}{7}}$.
Question 3. Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Answer:
Given expression:
The product $(1 + 2x)^6 (1 – x)^7$
To Find:
The coefficient of $x^5$ in the expansion of the product.
Solution:
We will expand each factor using the Binomial Theorem.
The Binomial Theorem states that $(u+v)^n = \sum\limits_{k=0}^{n} \binom{n}{k} u^{n-k} v^k$. For $(1+y)^n$, the general term is $\binom{n}{k} y^k$.
Consider the first factor, $(1 + 2x)^6$. Here $u=1$, $v=2x$, $n=6$.
The general term in this expansion is $T_{r+1} = \binom{6}{r} (1)^{6-r} (2x)^r = \binom{6}{r} 1 \cdot 2^r x^r = \binom{6}{r} 2^r x^r$.
The terms in the expansion of $(1 + 2x)^6$ are of the form $\binom{6}{r} 2^r x^r$ for $r = 0, 1, 2, 3, 4, 5, 6$.
Consider the second factor, $(1 – x)^7$. Here $u=1$, $v=-x$, $n=7$.
The general term in this expansion is $T'_{k+1} = \binom{7}{k} (1)^{7-k} (-x)^k = \binom{7}{k} 1 \cdot (-1)^k x^k = \binom{7}{k} (-1)^k x^k$.
The terms in the expansion of $(1 – x)^7$ are of the form $\binom{7}{k} (-1)^k x^k$ for $k = 0, 1, 2, 3, 4, 5, 6, 7$.
The product is $(1 + 2x)^6 (1 – x)^7$. When we multiply the expansions of these two factors, a term containing $x^5$ is obtained by multiplying a term with $x^r$ from the first expansion by a term with $x^k$ from the second expansion such that the sum of the exponents is 5, i.e., $r+k=5$.
The possible pairs of $(r, k)$ such that $r+k=5$, with $0 \leq r \leq 6$ and $0 \leq k \leq 7$, are:
$(r, k) \in \{(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)\}$
The coefficient of $x^5$ in the product is the sum of the products of the coefficients of the terms $x^r$ and $x^k$ for each of these pairs $(r, k)$.
Coefficient of $x^5 = \sum_{r+k=5} (\text{Coefficient of } x^r \text{ in } (1+2x)^6) \times (\text{Coefficient of } x^k \text{ in } (1-x)^7)$
Coefficient of $x^5 = \binom{6}{0}2^0 \binom{7}{5}(-1)^5 + \binom{6}{1}2^1 \binom{7}{4}(-1)^4 + \binom{6}{2}2^2 \binom{7}{3}(-1)^3 + \binom{6}{3}2^3 \binom{7}{2}(-1)^2 + \binom{6}{4}2^4 \binom{7}{1}(-1)^1 + \binom{6}{5}2^5 \binom{7}{0}(-1)^0$
Let's calculate each part:
For $(r,k)=(0,5)$: $\binom{6}{0}2^0 \times \binom{7}{5}(-1)^5 = (1 \times 1) \times (\frac{7 \times 6}{2} \times -1) = 1 \times (21 \times -1) = -21$
For $(r,k)=(1,4)$: $\binom{6}{1}2^1 \times \binom{7}{4}(-1)^4 = (6 \times 2) \times (\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times 1) = 12 \times (35 \times 1) = 420$
For $(r,k)=(2,3)$: $\binom{6}{2}2^2 \times \binom{7}{3}(-1)^3 = (\frac{6 \times 5}{2} \times 4) \times (\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times -1) = (15 \times 4) \times (35 \times -1) = 60 \times (-35) = -2100$
For $(r,k)=(3,2)$: $\binom{6}{3}2^3 \times \binom{7}{2}(-1)^2 = (\frac{6 \times 5 \times 4}{3 \times 2 \times 1} \times 8) \times (\frac{7 \times 6}{2 \times 1} \times 1) = (20 \times 8) \times (21 \times 1) = 160 \times 21 = 3360$
For $(r,k)=(4,1)$: $\binom{6}{4}2^4 \times \binom{7}{1}(-1)^1 = (\frac{6 \times 5}{2} \times 16) \times (7 \times -1) = (15 \times 16) \times (-7) = 240 \times (-7) = -1680$
For $(r,k)=(5,0)$: $\binom{6}{5}2^5 \times \binom{7}{0}(-1)^0 = (6 \times 32) \times (1 \times 1) = 192 \times 1 = 192$
The coefficient of $x^5$ is the sum of these values:
$-21 + 420 + (-2100) + 3360 + (-1680) + 192$
$= -21 + 420 - 2100 + 3360 - 1680 + 192$
$= (420 + 3360 + 192) - (21 + 2100 + 1680)$
$= 3972 - 3801$
$= 171$
The coefficient of $x^5$ in the product $(1 + 2x)^6 (1 – x)^7$ is $\mathbf{171}$.
Question 4. If a and b are distinct integers, prove that a – b is a factor of an – bn , whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Answer:
Given:
$a$ and $b$ are distinct integers.
$n$ is a positive integer.
To Prove:
$a - b$ is a factor of $a^n - b^n$.
This is equivalent to proving that $a^n - b^n$ is divisible by $a-b$.
Proof (using the hint):
Write $a^n$ as $(a - b + b)^n$. Let $a-b = x$. Then $a^n = (x+b)^n$.
Expand $(x+b)^n$ using the Binomial Theorem:
$(x+b)^n = \binom{n}{0}x^n b^0 + \binom{n}{1}x^{n-1} b^1 + \binom{n}{2}x^{n-2} b^2 + ... + \binom{n}{n-1}x^1 b^{n-1} + \binom{n}{n}x^0 b^n$
Substitute $x = a-b$ back into the expansion:
$a^n = \binom{n}{0}(a-b)^n b^0 + \binom{n}{1}(a-b)^{n-1} b^1 + \binom{n}{2}(a-b)^{n-2} b^2 + ... + \binom{n}{n-1}(a-b)^1 b^{n-1} + \binom{n}{n}(a-b)^0 b^n$
Simplify the terms:
$a^n = 1 \cdot (a-b)^n \cdot 1 + n (a-b)^{n-1} b + \binom{n}{2}(a-b)^{n-2} b^2 + ... + n (a-b) b^{n-1} + 1 \cdot 1 \cdot b^n$
$a^n = (a-b)^n + n (a-b)^{n-1} b + \binom{n}{2}(a-b)^{n-2} b^2 + ... + n (a-b) b^{n-1} + b^n$
Rearrange the equation to isolate $a^n - b^n$:
$a^n - b^n = (a-b)^n + n (a-b)^{n-1} b + \binom{n}{2}(a-b)^{n-2} b^2 + ... + n (a-b) b^{n-1}$
Notice that every term on the right side of the equation has a factor of $(a-b)$ (since $n$ is a positive integer, the lowest power of $(a-b)$ is 1 in the second to last term, and $(a-b)^k$ for $k \geq 1$ is divisible by $(a-b)$).
We can factor out $(a-b)$ from the entire right side:
$a^n - b^n = (a-b) \left[ (a-b)^{n-1} + n (a-b)^{n-2} b + \binom{n}{2}(a-b)^{n-3} b^2 + ... + n b^{n-1} \right]$
Let $K = \left[ (a-b)^{n-1} + n (a-b)^{n-2} b + \binom{n}{2}(a-b)^{n-3} b^2 + ... + n b^{n-1} \right]$.
Since $n$ is a positive integer, $a$ and $b$ are integers, all the terms inside the bracket are integers (assuming $n \geq 1$. If $n=1$, the term is $b^0=1$, which is an integer). Thus, $K$ is an integer.
So, we have $a^n - b^n = (a-b) K$, where $K$ is an integer.
This shows that $a^n - b^n$ can be expressed as a multiple of $a-b$. By definition, this means $a^n - b^n$ is divisible by $a-b$.
Therefore, $a - b$ is a factor of $a^n - b^n$ whenever $n$ is a positive integer.
Hence Proved.
Question 5. Evaluate $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$ .
Answer:
Given expression:
$(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$
This expression is in the form $(a+b)^n - (a-b)^n$, where $a = \sqrt{3}$, $b = \sqrt{2}$, and $n = 6$.
Let's expand $(a+b)^6$ and $(a-b)^6$ using the Binomial Theorem:
$(a+b)^6 = \binom{6}{0}a^6 b^0 + \binom{6}{1}a^5 b^1 + \binom{6}{2}a^4 b^2 + \binom{6}{3}a^3 b^3 + \binom{6}{4}a^2 b^4 + \binom{6}{5}a^1 b^5 + \binom{6}{6}a^0 b^6$
$(a-b)^6 = \binom{6}{0}a^6 (-b)^0 + \binom{6}{1}a^5 (-b)^1 + \binom{6}{2}a^4 (-b)^2 + \binom{6}{3}a^3 (-b)^3 + \binom{6}{4}a^2 (-b)^4 + \binom{6}{5}a^1 (-b)^5 + \binom{6}{6}a^0 (-b)^6$
$(a-b)^6 = \binom{6}{0}a^6 b^0 - \binom{6}{1}a^5 b^1 + \binom{6}{2}a^4 b^2 - \binom{6}{3}a^3 b^3 + \binom{6}{4}a^2 b^4 - \binom{6}{5}a^1 b^5 + \binom{6}{6}a^0 b^6$
Now, subtract $(a-b)^6$ from $(a+b)^6$:
$(a+b)^6 - (a-b)^6 = \left(\binom{6}{0}a^6 + \binom{6}{1}a^5 b + \binom{6}{2}a^4 b^2 + \binom{6}{3}a^3 b^3 + \binom{6}{4}a^2 b^4 + \binom{6}{5}a^1 b^5 + \binom{6}{6}a^0 b^6\right) - \left(\binom{6}{0}a^6 - \binom{6}{1}a^5 b + \binom{6}{2}a^4 b^2 - \binom{6}{3}a^3 b^3 + \binom{6}{4}a^2 b^4 - \binom{6}{5}a^1 b^5 + \binom{6}{6}a^0 b^6\right)$
When subtracting, the terms with even powers of $b$ (which are positive in both expansions) will cancel out, and the terms with odd powers of $b$ (which have opposite signs) will be added.
$(a+b)^6 - (a-b)^6 = 2\left[\binom{6}{1}a^5 b^1 + \binom{6}{3}a^3 b^3 + \binom{6}{5}a^1 b^5\right]$
Calculate the binomial coefficients:
$\binom{6}{1} = 6$
$\binom{6}{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$
$\binom{6}{5} = \binom{6}{6-5} = \binom{6}{1} = 6$
Substitute these coefficients and $a=\sqrt{3}$, $b=\sqrt{2}$ into the expression:
$2\left[6(\sqrt{3})^5 (\sqrt{2})^1 + 20(\sqrt{3})^3 (\sqrt{2})^3 + 6(\sqrt{3})^1 (\sqrt{2})^5\right]$
Calculate the powers of $\sqrt{3}$ and $\sqrt{2}$:
$(\sqrt{3})^1 = \sqrt{3}$
$(\sqrt{3})^3 = (\sqrt{3})^2 \times \sqrt{3} = 3\sqrt{3}$
$(\sqrt{3})^5 = (\sqrt{3})^2 \times (\sqrt{3})^2 \times \sqrt{3} = 3 \times 3 \times \sqrt{3} = 9\sqrt{3}$
$(\sqrt{2})^1 = \sqrt{2}$
$(\sqrt{2})^3 = (\sqrt{2})^2 \times \sqrt{2} = 2\sqrt{2}$
$(\sqrt{2})^5 = (\sqrt{2})^2 \times (\sqrt{2})^2 \times \sqrt{2} = 2 \times 2 \times \sqrt{2} = 4\sqrt{2}$
Substitute these values back into the expression:
$2\left[6(9\sqrt{3})(\sqrt{2}) + 20(3\sqrt{3})(2\sqrt{2}) + 6(\sqrt{3})(4\sqrt{2})\right]$
Use the property $\sqrt{u}\sqrt{v} = \sqrt{uv}$:
$2\left[54\sqrt{6} + 20(6\sqrt{6}) + 24\sqrt{6}\right]$
$2\left[54\sqrt{6} + 120\sqrt{6} + 24\sqrt{6}\right]$
Combine the terms with $\sqrt{6}$:
$2\left[(54 + 120 + 24)\sqrt{6}\right]$
$2\left[198\sqrt{6}\right]$
$2 \times 198 \times \sqrt{6} = 396\sqrt{6}$
The evaluated value is $\mathbf{396\sqrt{6}}$.
Question 6. Find the value of $(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$ .
Answer:
Given expression:
$(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$
This expression is in the form $(x+y)^n + (x-y)^n$, where $x = a^2$, $y = \sqrt{a^2 - 1}$, and $n = 4$.
Let's expand $(x+y)^4$ and $(x-y)^4$ using the Binomial Theorem:
$(x+y)^4 = \binom{4}{0}x^4 y^0 + \binom{4}{1}x^3 y^1 + \binom{4}{2}x^2 y^2 + \binom{4}{3}x^1 y^3 + \binom{4}{4}x^0 y^4$
$(x-y)^4 = \binom{4}{0}x^4 (-y)^0 + \binom{4}{1}x^3 (-y)^1 + \binom{4}{2}x^2 (-y)^2 + \binom{4}{3}x^1 (-y)^3 + \binom{4}{4}x^0 (-y)^4$
$(x-y)^4 = \binom{4}{0}x^4 y^0 - \binom{4}{1}x^3 y^1 + \binom{4}{2}x^2 y^2 - \binom{4}{3}x^1 y^3 + \binom{4}{4}x^0 y^4$
Now, add $(x+y)^4$ and $(x-y)^4$:
$(x+y)^4 + (x-y)^4 = \left(\binom{4}{0}x^4 y^0 + \binom{4}{1}x^3 y^1 + \binom{4}{2}x^2 y^2 + \binom{4}{3}x^1 y^3 + \binom{4}{4}x^0 y^4\right) + \left(\binom{4}{0}x^4 y^0 - \binom{4}{1}x^3 y^1 + \binom{4}{2}x^2 y^2 - \binom{4}{3}x^1 y^3 + \binom{4}{4}x^0 y^4\right)$
When adding, the terms with odd powers of $y$ (which have opposite signs) will cancel out, and the terms with even powers of $y$ (which have the same sign) will be added.
$(x+y)^4 + (x-y)^4 = 2\left[\binom{4}{0}x^4 y^0 + \binom{4}{2}x^2 y^2 + \binom{4}{4}x^0 y^4\right]$
Calculate the binomial coefficients:
$\binom{4}{0} = 1$
$\binom{4}{2} = \frac{4 \times 3}{2 \times 1} = 6$
$\binom{4}{4} = 1$
Substitute these coefficients and $x = a^2$, $y = \sqrt{a^2 - 1}$ into the expression:
$2\left[1 \cdot (a^2)^4 (\sqrt{a^2 - 1})^0 + 6 \cdot (a^2)^2 (\sqrt{a^2 - 1})^2 + 1 \cdot (a^2)^0 (\sqrt{a^2 - 1})^4\right]$
$2\left[1 \cdot a^8 \cdot 1 + 6 \cdot a^4 \cdot (a^2 - 1) + 1 \cdot 1 \cdot (a^2 - 1)^2\right]$
Expand and simplify the terms inside the bracket:
$a^8 + 6a^4(a^2 - 1) + (a^2 - 1)^2$
$a^8 + 6a^6 - 6a^4 + (a^4 - 2a^2 + 1)$
$a^8 + 6a^6 - 6a^4 + a^4 - 2a^2 + 1$
$a^8 + 6a^6 + (-6a^4 + a^4) - 2a^2 + 1$
$a^8 + 6a^6 - 5a^4 - 2a^2 + 1$
Multiply by 2:
$2(a^8 + 6a^6 - 5a^4 - 2a^2 + 1)$
$2a^8 + 12a^6 - 10a^4 - 4a^2 + 2$
The value of the expression is $\mathbf{2a^8 + 12a^6 - 10a^4 - 4a^2 + 2}$.
Question 7. Find an approximation of (0.99)5 using the first three terms of its expansion.
Answer:
Given expression:
$(0.99)^5$
To Find:
An approximation of $(0.99)^5$ using the first three terms of its binomial expansion.
Solution:
We can write $0.99$ as $1 - 0.01$. So, we need to consider the expansion of $(1 - 0.01)^5$.
This is in the form $(a+b)^n$, where $a = 1$, $b = -0.01$, and $n = 5$.
We use the Binomial Theorem for expansion:
$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \binom{n}{3}a^{n-3} b^3 + ... + \binom{n}{n}a^0 b^n$
For $(1 - 0.01)^5$, the first three terms correspond to $r=0$, $r=1$, and $r=2$ in the general term $T_{r+1} = \binom{5}{r} (1)^{5-r} (-0.01)^r = \binom{5}{r} (-0.01)^r$.
First term ($r=0$): $T_1 = \binom{5}{0} (-0.01)^0 = 1 \times 1 = 1$.
Second term ($r=1$): $T_2 = \binom{5}{1} (-0.01)^1 = 5 \times (-0.01) = -0.05$.
Third term ($r=2$): $T_3 = \binom{5}{2} (-0.01)^2 = \frac{5 \times 4}{2 \times 1} \times (0.0001) = 10 \times 0.0001 = 0.0010$.
The approximation using the first three terms is the sum of these three terms:
$(0.99)^5 \approx T_1 + T_2 + T_3$
$(0.99)^5 \approx 1 + (-0.05) + 0.0010$
$(0.99)^5 \approx 1 - 0.05 + 0.0010$
$(0.99)^5 \approx 0.95 + 0.0010$
$(0.99)^5 \approx 0.9510$
The approximation of $(0.99)^5$ using the first three terms is $\mathbf{0.9510}$.
Question 8. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left( \sqrt [4] {2} + \frac{1}{\sqrt [4] {3}} \right)^n$ is $\sqrt{6} : 1$ .
Answer:
Given expansion:
$\left( \sqrt [4] {2} + \frac{1}{\sqrt [4] {3}} \right)^n$
This is in the form $(a+b)^n$, where $a = \sqrt[4]{2} = 2^{1/4}$ and $b = \frac{1}{\sqrt[4]{3}} = 3^{-1/4}$.
To Find:
The value of $n$ such that the ratio of the fifth term from the beginning to the fifth term from the end is $\sqrt{6} : 1$.
Solution:
The general term (the $(k+1)^{\text{th}}$ term) in the expansion of $(a+b)^n$ is given by the formula:
$T_{k+1} = \binom{n}{k} a^{n-k} b^k$
The fifth term from the beginning corresponds to $k+1 = 5$, so $k=4$.
$T_5 (\text{from beginning}) = T_{4+1} = \binom{n}{4} a^{n-4} b^4$
Substituting $a=2^{1/4}$ and $b=3^{-1/4}$:
$T_5 (\text{from beginning}) = \binom{n}{4} (2^{1/4})^{n-4} (3^{-1/4})^4 = \binom{n}{4} 2^{(n-4)/4} 3^{-4/4} = \binom{n}{4} 2^{(n-4)/4} 3^{-1}$
The total number of terms in the expansion is $n+1$.
The $r^{\text{th}}$ term from the end is the $(n+1 - r + 1)^{\text{th}} = (n-r+2)^{\text{th}}$ term from the beginning.
The fifth term from the end corresponds to $r=5$. Its position from the beginning is $(n-5+2)^{\text{th}} = (n-3)^{\text{th}}$.
So, the fifth term from the end is $T_{n-3}$ from the beginning. This corresponds to $k+1 = n-3$, so $k = n-4$.
$T_5 (\text{from end}) = T_{n-4+1} = \binom{n}{n-4} a^{n-(n-4)} b^{n-4} = \binom{n}{n-4} a^4 b^{n-4}$
Substituting $a=2^{1/4}$ and $b=3^{-1/4}$:
$T_5 (\text{from end}) = \binom{n}{n-4} (2^{1/4})^4 (3^{-1/4})^{n-4} = \binom{n}{n-4} 2^{4/4} 3^{-(n-4)/4} = \binom{n}{n-4} 2^1 3^{-(n-4)/4}$
We are given that the ratio of the fifth term from the beginning to the fifth term from the end is $\sqrt{6} : 1$.
$\frac{T_5 (\text{from beginning})}{T_5 (\text{from end})} = \frac{\sqrt{6}}{1} = \sqrt{6}$
$\frac{\binom{n}{4} 2^{(n-4)/4} 3^{-1}}{\binom{n}{n-4} 2^1 3^{-(n-4)/4}} = \sqrt{6}$
Using the property $\binom{n}{k} = \binom{n}{n-k}$, we have $\binom{n}{4} = \binom{n}{n-4}$. These terms cancel out.
$\frac{2^{(n-4)/4} 3^{-1}}{2^1 3^{-(n-4)/4}} = \sqrt{6}$
Separate the terms with base 2 and 3:
$\frac{2^{(n-4)/4}}{2^1} \times \frac{3^{-1}}{3^{-(n-4)/4}} = \sqrt{6}$
Using the exponent rule $\frac{x^p}{x^q} = x^{p-q}$ and $\frac{1}{x^q} = x^{-q}$:
$2^{((n-4)/4) - 1} \times 3^{-1 - (-(n-4)/4)} = \sqrt{6}$
$2^{(n-4-4)/4} \times 3^{-1 + (n-4)/4} = \sqrt{6}$
$2^{(n-8)/4} \times 3^{(n-4-4)/4} = \sqrt{6}$
$2^{(n-8)/4} \times 3^{(n-8)/4} = \sqrt{6}$
Using the property $(uv)^p = u^p v^p$ in reverse:
$(2 \times 3)^{(n-8)/4} = \sqrt{6}$
$6^{(n-8)/4} = 6^{1/2}$
Since the bases are equal, the exponents must be equal:
$\frac{n-8}{4} = \frac{1}{2}$
Multiply both sides by 4:
$n-8 = \frac{1}{2} \times 4$
$n-8 = 2$
$n = 8 + 2$
$n = 10$
We should verify if $n=10$ is valid. The 5th term from the beginning exists if $n \geq 4$, and the 5th term from the end (which is the $10-5+2=7$th term from the beginning) exists if $n \geq 6$. Both conditions are satisfied for $n=10$.
The value of n is $\mathbf{10}$.
Question 9. Expand using Binomial Theorem $\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}\;,\; x\neq0$
Answer:
Given expression:
$\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}$
To Expand:
Expand the given trinomial using the Binomial Theorem.
Solution:
The Binomial Theorem applies to binomials (expressions with two terms). We can group terms to apply the theorem.
Let $y = \frac{x}{2} - \frac{2}{x}$. Then the expression is $(1 + y)^4$.
Expand $(1+y)^4$ using the Binomial Theorem with $a=1$, $b=y$, $n=4$:
$(1+y)^4 = \binom{4}{0}1^4 y^0 + \binom{4}{1}1^3 y^1 + \binom{4}{2}1^2 y^2 + \binom{4}{3}1^1 y^3 + \binom{4}{4}1^0 y^4$
$(1+y)^4 = 1 + 4y + 6y^2 + 4y^3 + y^4$
Now substitute back $y = \frac{x}{2} - \frac{2}{x}$ into this expansion.
$y = \frac{x}{2} - \frac{2}{x}$
$y^2 = \left(\frac{x}{2} - \frac{2}{x}\right)^2 = \left(\frac{x}{2}\right)^2 - 2\left(\frac{x}{2}\right)\left(\frac{2}{x}\right) + \left(\frac{2}{x}\right)^2 = \frac{x^2}{4} - 2 + \frac{4}{x^2}$
$y^3 = y \cdot y^2 = \left(\frac{x}{2} - \frac{2}{x}\right) \left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right)$
$y^3 = \frac{x}{2}\left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right) - \frac{2}{x}\left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right)$
$y^3 = \left(\frac{x^3}{8} - x + \frac{2}{x}\right) - \left(\frac{x}{2} - \frac{4}{x} + \frac{8}{x^3}\right)$
$y^3 = \frac{x^3}{8} - x + \frac{2}{x} - \frac{x}{2} + \frac{4}{x} - \frac{8}{x^3}$
$y^3 = \frac{x^3}{8} + (-x - \frac{x}{2}) + (\frac{2}{x} + \frac{4}{x}) - \frac{8}{x^3}$
$y^3 = \frac{x^3}{8} - \frac{3x}{2} + \frac{6}{x} - \frac{8}{x^3}$
$y^4 = (y^2)^2 = \left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right)^2$. Let $A = \frac{x^2}{4}$ and $B = \frac{4}{x^2}$. Then $y^2 = A + B - 2$.
$y^4 = ((A+B)-2)^2 = (A+B)^2 - 2(A+B)(2) + 4$
$y^4 = (A^2 + 2AB + B^2) - 4(A+B) + 4$
$y^4 = \left(\frac{x^2}{4}\right)^2 + 2\left(\frac{x^2}{4}\right)\left(\frac{4}{x^2}\right) + \left(\frac{4}{x^2}\right)^2 - 4\left(\frac{x^2}{4} + \frac{4}{x^2}\right) + 4$
$y^4 = \frac{x^4}{16} + 2(1) + \frac{16}{x^4} - x^2 - \frac{16}{x^2} + 4$
$y^4 = \frac{x^4}{16} + 2 + \frac{16}{x^4} - x^2 - \frac{16}{x^2} + 4$
$y^4 = \frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6$
Now substitute $y$, $y^2$, $y^3$, and $y^4$ back into the expansion $1 + 4y + 6y^2 + 4y^3 + y^4$:
$1 + 4\left(\frac{x}{2} - \frac{2}{x}\right) + 6\left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right) + 4\left(\frac{x^3}{8} - \frac{3x}{2} + \frac{6}{x} - \frac{8}{x^3}\right) + \left(\frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6\right)$
Distribute the coefficients:
$1 + \left(2x - \frac{8}{x}\right) + \left(\frac{6x^2}{4} - 12 + \frac{24}{x^2}\right) + \left(\frac{4x^3}{8} - \frac{12x}{2} + \frac{24}{x} - \frac{32}{x^3}\right) + \left(\frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6\right)$
$1 + 2x - \frac{8}{x} + \frac{3x^2}{2} - 12 + \frac{24}{x^2} + \frac{x^3}{2} - 6x + \frac{24}{x} - \frac{32}{x^3} + \frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6$
Group terms by powers of $x$:
$x^4$: $\frac{x^4}{16}$
$x^3$: $\frac{x^3}{2}$
$x^2$: $\frac{3x^2}{2} - x^2 = \frac{3}{2}x^2 - \frac{2}{2}x^2 = \frac{1}{2}x^2$
$x^1$: $2x - 6x = -4x$
$x^0$ (constant): $1 - 12 + 6 = -5$
$x^{-1}$: $-\frac{8}{x} + \frac{24}{x} = \frac{-8+24}{x} = \frac{16}{x}$
$x^{-2}$: $\frac{24}{x^2} - \frac{16}{x^2} = \frac{24-16}{x^2} = \frac{8}{x^2}$
$x^{-3}$: $-\frac{32}{x^3}$
$x^{-4}$: $\frac{16}{x^4}$
Combine all the terms:
$\frac{x^4}{16} + \frac{x^3}{2} + \frac{x^2}{2} - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}$
The expanded form is:
$\mathbf{\frac{x^4}{16} + \frac{x^3}{2} + \frac{x^2}{2} - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}}$
Question 10. Find the expansion of (3x2 – 2ax + 3a2 )3 using binomial theorem
Answer:
Given expression:
$(3x^2 - 2ax + 3a^2 )^3$
To Expand:
Expand the given trinomial using the Binomial Theorem.
Solution:
The Binomial Theorem is used for expanding expressions with two terms. To expand a trinomial like this, we can group terms together to form a binomial.
Let's group the terms as $((3x^2) + (-2ax + 3a^2))^3$.
Let $u = 3x^2$ and $v = -2ax + 3a^2$. The expression becomes $(u + v)^3$.
Using the Binomial Theorem for $n=3$:
$(u+v)^3 = \binom{3}{0}u^3v^0 + \binom{3}{1}u^2v^1 + \binom{3}{2}u^1v^2 + \binom{3}{3}u^0v^3$
$(u+v)^3 = 1 \cdot u^3 + 3 \cdot u^2 v + 3 \cdot u v^2 + 1 \cdot v^3$
Now substitute back $u = 3x^2$ and $v = -2ax + 3a^2$ and expand each term:
Term 1: $u^3$
$u^3 = (3x^2)^3 = 3^3 (x^2)^3 = 27x^{2 \times 3} = 27x^6$
Term 2: $3u^2v$
$3u^2v = 3(3x^2)^2 (-2ax + 3a^2)$
$3u^2v = 3(9x^4) (-2ax + 3a^2)$
$3u^2v = 27x^4 (-2ax + 3a^2)$
$3u^2v = 27x^4 (-2ax) + 27x^4 (3a^2)$
$3u^2v = -54ax^5 + 81a^2x^4$
Term 3: $3uv^2$
$3uv^2 = 3(3x^2) (-2ax + 3a^2)^2$
$3uv^2 = 9x^2 (-2ax + 3a^2)^2$
Expand $(-2ax + 3a^2)^2$ using $(p+q)^2 = p^2 + 2pq + q^2$ with $p=-2ax$ and $q=3a^2$:
$(-2ax + 3a^2)^2 = (-2ax)^2 + 2(-2ax)(3a^2) + (3a^2)^2$
$(-2ax + 3a^2)^2 = 4a^2x^2 - 12a^3x + 9a^4$
Substitute this back into the expression for Term 3:
$3uv^2 = 9x^2 (4a^2x^2 - 12a^3x + 9a^4)$
$3uv^2 = 9x^2 (4a^2x^2) + 9x^2 (-12a^3x) + 9x^2 (9a^4)$
$3uv^2 = 36a^2x^4 - 108a^3x^3 + 81a^4x^2$
Term 4: $v^3$
$v^3 = (-2ax + 3a^2)^3$
Expand $(-2ax + 3a^2)^3$ using $(p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3$ with $p=-2ax$ and $q=3a^2$:
$v^3 = (-2ax)^3 + 3(-2ax)^2(3a^2) + 3(-2ax)(3a^2)^2 + (3a^2)^3$
$v^3 = -8a^3x^3 + 3(4a^2x^2)(3a^2) + 3(-2ax)(9a^4) + 27a^6$
$v^3 = -8a^3x^3 + 36a^4x^2 - 54a^5x + 27a^6$
Add all the expanded terms together:
$(3x^2 - 2ax + 3a^2)^3 = (27x^6) + (-54ax^5 + 81a^2x^4) + (36a^2x^4 - 108a^3x^3 + 81a^4x^2) + (-8a^3x^3 + 36a^4x^2 - 54a^5x + 27a^6)$
Combine like terms (terms with the same powers of $x$ and $a$). Order by descending powers of $x$:
$27x^6$
$-54ax^5$
$81a^2x^4 + 36a^2x^4 = (81+36)a^2x^4 = 117a^2x^4$
$-108a^3x^3 - 8a^3x^3 = (-108-8)a^3x^3 = -116a^3x^3$
$81a^4x^2 + 36a^4x^2 = (81+36)a^4x^2 = 117a^4x^2$
$-54a^5x$
$27a^6$
The final expanded form is:
$\mathbf{27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6}$